scholarly journals Nonlinear imaging of whispering gallery modes in GaN microwires

2021 ◽  
Vol 2015 (1) ◽  
pp. 012015
Author(s):  
Yury Berdnikov ◽  
Igor Shtrom ◽  
Maria Rozhavskaya ◽  
Wsevolod Lundin ◽  
Nicholas Hendricks ◽  
...  

Abstract In this work non-scanning far-field nonlinear optical microscopy is employed to study the whispering gallery modes in tapered GaN microwire resonators. We demonstrate the confinement of whispering gallery modes under near-infrared excitation with the photon energy close to half of GaN bandgap. Our results indicate the enhancement of yellow-green luminescence by whispering gallery modes in GaN microwires.

2017 ◽  
Vol 19 (34) ◽  
pp. 22836-22843 ◽  
Author(s):  
M. Oujja ◽  
S. Psilodimitrakopoulos ◽  
E. Carrasco ◽  
M. Sanz ◽  
A. Philippidis ◽  
...  

Nonlinear optical microscopy imaging serves to characterize the in-depth morphological and photochemical modifications induced by pulsed UV laser removal of dammar varnish applied on a photosensitive substrate.


2019 ◽  
Author(s):  
Zheng Zheng ◽  
Dongyu Li ◽  
zhiyang liu ◽  
Hui-Qing Peng ◽  
Herman H.-Y. Sung ◽  
...  

<p><a></a>Nonlinear optical microscopy has become a powerful tool in bioimaging research due to its unique capabilities of deep optical sectioning, high spatial resolution imaging and three-dimensional reconstruction of biological specimens. Developing organic fluorescent probes with strong nonlinear optical effects, in particular third-harmonic generation (THG), is promising for exploiting nonlinear microscopic imaging for biomedical applications. Herein, we succesfully demonstrate a simple method for preparing organic nanocrystals based on an aggregation-induced emission (AIE) luminogen (DCCN) with bright near-infrared emission. Under femtosecond laser excitation, the high-order nonlinear optical effects of DCCN were studied in three distinct systems, including monomolecules in solution, amorphous nanopaticles, and crystaline nanopaticles. Results revealed aggregation-induced nonlinear optical (AINLO) effects, including two-photon fluorescence (2PF), three-photon fluorescence (3PF) and THG, of DCCN in nanopaticles, especially for the crystaline nanopaticles. Taking advantage of the strong 2PF and THG properties, the nanocrystals of DCCN have been successfully applied for 2PF microscopy at 1040 nm NIR-II excitation and THG microscopy at 1560 nm NIR-II excitation, respectively, to reconstruct the 3D vasculature of the mouse cerebral vasculature. Impressively, the THG microscopy could provide much higher spatial resolution and brightness than the 2PF microscopy and could visualize small vessels with diameters of ~2.7 μm at deepest depth of 800 μm in mouse brain, which is among the largest penetration depth and best spatial resolution of in vivo THG vasculature imaging. Thus, this is expected to inspire new insights into development of advanced AIE materials with multiple nonlinearity, in particular THG, for multimodal nonlinear optical microscopy.<br></p>


2019 ◽  
Author(s):  
Zheng Zheng ◽  
Dongyu Li ◽  
zhiyang liu ◽  
Hui-Qing Peng ◽  
Herman H.-Y. Sung ◽  
...  

<p><a></a>Nonlinear optical microscopy has become a powerful tool in bioimaging research due to its unique capabilities of deep optical sectioning, high spatial resolution imaging and three-dimensional reconstruction of biological specimens. Developing organic fluorescent probes with strong nonlinear optical effects, in particular third-harmonic generation (THG), is promising for exploiting nonlinear microscopic imaging for biomedical applications. Herein, we succesfully demonstrate a simple method for preparing organic nanocrystals based on an aggregation-induced emission (AIE) luminogen (DCCN) with bright near-infrared emission. Under femtosecond laser excitation, the high-order nonlinear optical effects of DCCN were studied in three distinct systems, including monomolecules in solution, amorphous nanopaticles, and crystaline nanopaticles. Results revealed aggregation-induced nonlinear optical (AINLO) effects, including two-photon fluorescence (2PF), three-photon fluorescence (3PF) and THG, of DCCN in nanopaticles, especially for the crystaline nanopaticles. Taking advantage of the strong 2PF and THG properties, the nanocrystals of DCCN have been successfully applied for 2PF microscopy at 1040 nm NIR-II excitation and THG microscopy at 1560 nm NIR-II excitation, respectively, to reconstruct the 3D vasculature of the mouse cerebral vasculature. Impressively, the THG microscopy could provide much higher spatial resolution and brightness than the 2PF microscopy and could visualize small vessels with diameters of ~2.7 μm at deepest depth of 800 μm in mouse brain, which is among the largest penetration depth and best spatial resolution of in vivo THG vasculature imaging. Thus, this is expected to inspire new insights into development of advanced AIE materials with multiple nonlinearity, in particular THG, for multimodal nonlinear optical microscopy.<br></p>


2015 ◽  
Vol 23 (22) ◽  
pp. 28896 ◽  
Author(s):  
Nicolas Riesen ◽  
Tess Reynolds ◽  
Alexandre François ◽  
Matthew R. Henderson ◽  
Tanya M. Monro

2013 ◽  
Vol 4 (10) ◽  
pp. 1937 ◽  
Author(s):  
Keisuke Isobe ◽  
Hiroyuki Kawano ◽  
Akiko Kumagai ◽  
Atsushi Miyawaki ◽  
Katsumi Midorikawa

2021 ◽  
pp. 1-11
Author(s):  
Chao-Wei Hung ◽  
Nirmal Mazumder ◽  
Dan-Jae Lin ◽  
Wei-Liang Chen ◽  
Shih-Ting Lin ◽  
...  

Abstract


Sign in / Sign up

Export Citation Format

Share Document