optical effects
Recently Published Documents


TOTAL DOCUMENTS

1758
(FIVE YEARS 204)

H-INDEX

66
(FIVE YEARS 9)

Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Hongyu Tang ◽  
Sergey G. Menabde ◽  
Tarique Anwar ◽  
Junhyung Kim ◽  
Min Seok Jang ◽  
...  

Abstract Photo-modulation is a promising strategy for contactless and ultrafast control of optical and electrical properties of photoactive materials. Graphene is an attractive candidate material for photo-modulation due to its extraordinary physical properties and its relevance to a wide range of devices, from photodetectors to energy converters. In this review, we survey different strategies for photo-modulation of electrical and optical properties of graphene, including photogating, generation of hot carriers, and thermo-optical effects. We briefly discuss the role of nanophotonic strategies to maximize these effects and highlight promising fields for application of these techniques.


2022 ◽  
Author(s):  
Nikita Ustimenko ◽  
Danil F. Kornovan ◽  
Kseniia V. Baryshnikova ◽  
Andrey B. Evlyukhin ◽  
Mihail I. Petrov

Abstract Exciting optical effects such as polarization control, imaging, and holography were demonstrated at the nanoscale using the complex and irregular structures of nanoparticles with the multipole Mie-resonances in the optical range. The optical response of such particles can be simulated either by full wave numerical simulations or by the widely used analytical coupled multipole method (CMM), however, an analytical solution in the framework of CMM can be obtained only in a limited number of cases. In this paper, a modification of the CMM in the framework of the Born series and its applicability for simulation of light scattering by finite nanosphere structures, maintaining both dipole and quadrupole resonances, are investigated. The Born approximation simplifies an analytical consideration of various systems and helps shed light on physical processes ongoing in that systems. Using Mie theory and Green’s functions approach, we analytically formulate the rigorous coupled dipole-quadrupole equations and their solution in the different-order Born approximations. We analyze in detail the resonant scattering by dielectric nanosphere structures such as dimer and ring to obtain the convergence conditions of the Born series and investigate how the physical characteristics such as absorption in particles, type of multipole resonance, and geometry of ensemble influence the convergence of Born series and its accuracy.


2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Kirsten Derks ◽  
Geert Van der Snickt ◽  
Stijn Legrand ◽  
Katlijne Van der Stighelen ◽  
Koen Janssens

AbstractAlthough the topic is rarely addressed in literature, a significant number of baroque paintings exhibit dark, halo-like shapes around the contours of the dramatis personae. Close examination of both finished and unfinished works suggests that this intriguing feature was a practical tool that helped the artist in the early painting stages. When applying the final brushwork, the halo lost its function, with some artists undertaking efforts to hide it. Although their visibility might not have been intended by the artists, today this dark paint beneath the surface is partially visible through the upper paint layers. Moreover, the disclosure of many halos using infrared photography (IRP), infrared reflectography (IRR) and macro X-ray fluorescence imaging (MA-XRF), additional to those that can be observed visually, suggests that this was a common and established element of 17th-century painting practice in Western Europe. Building on an existing hypothesis, we argue that halos can be considered as a solution to an optical problem that arose when baroque painters reversed the traditional, 15th- and 16th-century painting sequence of working from background to foreground. Instead, they started with the dominant parts of a composition, such as the face of a sitter. In that case, a temporary halo can provide the essential tonal reference to anticipate the chromatic impact of the final dark colored background on the adjacent delicate carnations. In particular, we attempt to clarify the prevalence of dark halos as a response to optical effects such as ‘simultaneous contrast’ and ‘the crispening effect’, described in literature only centuries later. As such, the recently termed ‘ring condition’ can be seen as the present-day equivalent of the ‘halo solution’ that was seemingly empirically or intuitively developed by 17th-century artists. Modern studies in visual perception proves that by laying a black ring around a target color, the optical impact of a surrounding color can be efficiently neutralized. Finally, by delving into works by Michael Sweerts, it becomes clear that resourceful artists might have adapted the halo technique and the underlying principles to their individual challenges, such as dealing with differently colored grounds.


Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Kang Du ◽  
Hamdi Barkaoui ◽  
Xudong Zhang ◽  
Limin Jin ◽  
Qinghai Song ◽  
...  

Abstract Optical metasurfaces is a rapidly developing research field driven by its exceptional applications for creating easy-to-integrate ultrathin planar optical devices. The tight confinement of the local electromagnetic fields in resonant photonic nanostructures can boost many optical effects and offer novel opportunities for the nanoscale control of light–matter interactions. However, once the structure-only metasurfaces are fabricated, their functions will be fixed, which limits it to make breakthroughs in practical applications. Recently, persistent efforts have led to functional multiplexing. Besides, dynamic light manipulation based on metasurfaces has been demonstrated, providing a footing ground for arbitrary light control in full space-time dimensions. Here, we review the latest research progress in multifunctional and tunable metasurfaces. Firstly, we introduce the evolution of metasurfaces and then present the concepts, the basic principles, and the design methods of multifunctional metasurface. Then with more details, we discuss how to realize metasurfaces with both multifunctionality and tunability. Finally, we also foresee various future research directions and applications of metasurfaces including innovative design methods, new material platforms, and tunable metasurfaces based metadevices.


2021 ◽  
Vol 12 (1) ◽  
pp. 100
Author(s):  
Miguel A. Arranz ◽  
Elena H. Sánchez ◽  
Víctor Ruiz-Díez ◽  
José L. Sánchez-Rojas ◽  
José M. Colino

The purpose of this paper is to present an experimental method to induce strong magnetic linear birefringence in two-dimensional assemblies of Co nanoclusters grown on glass plates. Additionally, we have also correlated the magnitude and characteristics of that nonlinear magneto-optical effect with the thickness and profile of those disordered nanostructures. For those aims, we have grown Co nanocluster assemblies on amorphous substrates, by means of pulsed laser ablation in off-axis geometry. This approach enabled us to obtain magnetic media with an intended and pronounced thickness profile, i.e., wedge-shaped assembly, to investigate the orientation and behavior of surface magnetization regarding both the thickness gradient direction and in-plane magnetic field. That study was accomplished by measuring the magneto-optical effects in reflection and transmission configurations, unveiling an out-of-plane magnetization whose magnitude depends closely on the thickness gradient direction. That component, arising from a graded magnetic anisotropy along the wedged nanostructure, adds a reversal mechanism to the surface magnetization, thus being responsible for the magnetic linear birefringence in our ultrathin Co assemblies.


2021 ◽  
Vol 12 (2-2021) ◽  
pp. 72-76
Author(s):  
D. A. Vorobev ◽  
◽  
O. V. Sidorova ◽  
M. N. Palatnikov ◽  
A. V. Kadetova ◽  
...  

The coefficients of the second-order nonlinear optical tensor for lithium niobate crystal with a composition close to stoichiometric were calculated. The calculated results show that the contribution of the Li-O group to the optical effects of the second harmonic was greater than the contribution of the Nb-O group. The results also showed that the most efficient frequency conversion occurred along the polar axis of the crystal


2021 ◽  
Vol 2086 (1) ◽  
pp. 012156
Author(s):  
T V Mikhailova ◽  
S V Osmanov ◽  
V O Boyko

Abstract The resonant enhancement of magneto-optical effects due to structure modes arising at the boundary of magnetic photonic crystal [TiO2 / SiO2] m / iron garnet / SiO2 / (SiO2-Au), in which the upper layer (SiO2-Au) is a composite layer of SiO2 with metallic Au nanoscale inclusions, and iron garnet is a bi-layer of composition Bi1.0Lu0.5Gd1.5Fe4.2Al0.8O12 / Bi2.3Dy0.7Fe4.2Ga0.8O12, has been considered by modelling of 4×4 transfer matrix method.


Sign in / Sign up

Export Citation Format

Share Document