Monitoring of endogenous nitric oxide exhaled by pig lungs during ex-vivo lung perfusion

2021 ◽  
Vol 15 (2) ◽  
pp. 027103
Author(s):  
Thibaut Chollier ◽  
Lucile Richard ◽  
Daniele Romanini ◽  
Angélique Brouta ◽  
Jean-Luc Martin ◽  
...  
1995 ◽  
Vol 79 (4) ◽  
pp. 1088-1092 ◽  
Author(s):  
M. M. Kurrek ◽  
L. Castillo ◽  
K. D. Bloch ◽  
S. R. Tannenbaum ◽  
W. M. Zapol

Nitric oxide (NO) has been demonstrated to decrease its own synthesis in tissue preparations. We tested the hypothesis that endogenous NO synthesis induced by lipopolysaccharides (LPS) would be decreased by exogenous NO during isolated lung perfusion. Rats were pretreated with either saline or LPS 48 h before lung harvest. Endogenous NO synthase activity was measured as conversion of L-[14C]-arginine to L-[14C]citrulline during 90 min of perfusion. NO (100 ppm) was added to the ventilating gas during perfusion of lungs from one group of control or LPS-treated rats. A second group of control or LPS-treated rats was exposed chronically to 100 ppm NO for the 48 h before lung harvest, in addition to receiving 100 ppm NO added to the ventilating gas during lung perfusion. We conclude that conversion of L-[14C]arginine to L-[14C]citrulline was minimal in control lungs and increased in response to LPS pretreatment. NO added to the ventilating gas for the 90 min of ex vivo perfusion did not alter the rate of L-[14C]citrulline production. In vivo exposure to 100 ppm NO for 48 h did not alter the induction of inducible NO synthase activity as measured during ex vivo lung perfusion. This indicates that inhaled NO does not exert negative-feedback inhibition on inducible NO synthase in the ex vivo rat lung.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 300 ◽  
Author(s):  
Farshad Tavasoli ◽  
Mingyao Liu ◽  
Tiago Machuca ◽  
Riccardo Bonato ◽  
David R. Grant ◽  
...  

An established pig lung transplantation model was used to study the effects of cold ischemia time, normothermic acellular ex vivo lung perfusion (EVLP) and reperfusion after lung transplantation on l-arginine/NO metabolism in lung tissue. Lung tissue homogenates were analyzed for NO metabolite (NOx) concentrations by chemiluminescent NO-analyzer technique, and l-arginine, l-ornithine, l-citrulline and asymmetric dimethylarginine (ADMA) quantified using liquid chromatography-mass spectrometry (LC-MS/MS). The expression of arginase and nitric oxide synthase (NOS) isoforms in lung was measured by real-time polymerase chain reaction. EVLP preservation resulted in a significant decrease in concentrations of NOx and l-citrulline, both products of NOS, at the end of EVLP and after reperfusion following transplantation, compared to control, respectively. The ratio of l-ornithine over l-citrulline, a marker of the balance between l-arginine metabolizing enzymes, was increased in the EVLP group prior to reperfusion. The expression of both arginase isoforms was increased from baseline 1 h post reperfusion in EVLP but not in the no-EVLP group. These data suggest that EVLP results in a shift of the l-arginine balance towards arginase, leading to NO deficiency in the lung. The arginase/NOS balance may, therefore, represent a therapeutic target to improve lung quality during EVLP and, subsequently, transplant outcomes.


Author(s):  
Vinicius S. Michaelsen ◽  
Rafaela VP. Ribeiro ◽  
Aadil Ali ◽  
Aizhou Wang ◽  
Anajara Gazzalle ◽  
...  

2010 ◽  
Vol 58 (S 01) ◽  
Author(s):  
S Wipper ◽  
Y von Rittberg ◽  
J Lindner ◽  
C Pahrmann ◽  
H Reichenspurner ◽  
...  

2015 ◽  
Vol 63 (S 01) ◽  
Author(s):  
W. Sommer ◽  
M. Avsar ◽  
J. Salman ◽  
C. Kühn ◽  
I. Tudorache ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document