scholarly journals Visualisation of the large scale circulation in Rayleigh-Bénard convection using contactless inductive flow tomography

Author(s):  
T. Wondrak ◽  
F. Stefani ◽  
V. Galindo ◽  
S. Eckert
2009 ◽  
Vol 638 ◽  
pp. 383-400 ◽  
Author(s):  
ERIC BROWN ◽  
GUENTER AHLERS

In agreement with a recent experimental discovery by Xi et al. (Phys. Rev. Lett., vol. 102, 2009, paper no. 044503), we also find a sloshing mode in experiments on the large-scale circulation (LSC) of turbulent Rayleigh–Bénard convection in a cylindrical sample of aspect ratio one. The sloshing mode has the same frequency as the torsional oscillation discovered by Funfschilling & Ahlers (Phys. Rev. Lett., vol. 92, 2004, paper no. 1945022004). We show that both modes can be described by an extension of a model developed previously Brown & Ahlers (Phys. Fluids, vol. 20, 2008, pp. 105105-1–105105-15; Phys. Fluids, vol. 20, 2008, pp. 075101-1–075101-16). The extension consists of permitting a lateral displacement of the LSC circulation plane away from the vertical centreline of the sample as well as a variation of the displacement with height (such displacements had been excluded in the original model). Pressure gradients produced by the sidewall of the container on average centre the plane of the LSC so that it prefers to reach its longest diameter. If the LSC is displaced away from this diameter, the walls provide a restoring force. Turbulent fluctuations drive the LSC away from the central alignment, and combined with the restoring force they lead to oscillations. These oscillations are advected along with the LSC. This model yields the correct wavenumber and phase of the oscillations, as well as estimates of the frequency, amplitude and probability distributions of the displacements.


2015 ◽  
Vol 778 ◽  
Author(s):  
Jin-Qiang Zhong ◽  
Sebastian Sterl ◽  
Hui-Min Li

We present measurements of the azimuthal rotation velocity $\dot{{\it\theta}}(t)$ and thermal amplitude ${\it\delta}(t)$ of the large-scale circulation in turbulent Rayleigh–Bénard convection with modulated rotation. Both $\dot{{\it\theta}}(t)$ and ${\it\delta}(t)$ exhibit clear oscillations at the modulation frequency ${\it\omega}$. Fluid acceleration driven by oscillating Coriolis force causes an increasing phase lag in $\dot{{\it\theta}}(t)$ when ${\it\omega}$ increases. The applied modulation produces oscillatory boundary layers and the resulting time-varying viscous drag modifies ${\it\delta}(t)$ periodically. Oscillation of $\dot{{\it\theta}}(t)$ with maximum amplitude occurs at a finite modulation frequency ${\it\omega}^{\ast }$. Such a resonance-like phenomenon is interpreted as a result of optimal coupling of ${\it\delta}(t)$ to the modulated rotation velocity. We show that an extended large-scale circulation model with a relaxation time for ${\it\delta}(t)$ in response to the modulated rotation provides predictions in close agreement with the experimental results.


2009 ◽  
Vol 630 ◽  
pp. 367-390 ◽  
Author(s):  
QUAN ZHOU ◽  
HENG-DONG XI ◽  
SHENG-QI ZHOU ◽  
CHAO SUN ◽  
KE-QING XIA

We report an experimental study of the large-scale circulation (LSC) in a turbulent Rayleigh–Bénard convection cell with aspect ratio unity. The temperature-extrema-extraction (TEE) method for obtaining the dynamic information of the LSC is presented. With this method, the azimuthal angular positions of the hot ascending and cold descending flows along the sidewall are identified from the measured instantaneous azimuthal temperature profile. The motion of the LSC is then decomposed into two different modes based on these two angles: the azimuthal mode and the translational or sloshing mode that is perpendicular to the vertical circulation plane of the LSC. Comparing to the previous sinusoidal-fitting (SF) method, it is found that both the TEE and the SF methods give the same information about the azimuthal motion of the LSC, but the TEE method in addition can provide information about the sloshing motion of the LSC. The sloshing motion is found to oscillate time-periodically around the cell's central vertical axis with an amplitude being nearly independent of the turbulent intensity and to have a π/2 phase difference with the torsional mode. It is further found that the azimuthal angular positions of the hot ascending and cold descending flows oscillate out of phase with each other by π, which leads to the observations of the torsional mode when these two flows are near the top and the bottom plates, respectively, and of the sloshing mode when they are both near the mid-height plane. A direct velocity measurement further confirms the existence of the bulk sloshing mode of the flow field.


Sign in / Sign up

Export Citation Format

Share Document