lateral displacement
Recently Published Documents





Structures ◽  
2022 ◽  
Vol 37 ◽  
pp. 168-184
Jinxiang Zhang ◽  
Mingjin Zhang ◽  
Xulei Jiang ◽  
Renan Yuan ◽  
Jisheng Yu ◽  

2022 ◽  
Xiaofeng Zhang ◽  
Harry Far

Abstract As the population grows and land prices rise, high-rise buildings are becoming more and more common and popular in urban cities. Traditional high-rise building design method generally assumes the structure is fixed at the base, because the influence of soil-structure interaction is considered to be beneficial to the response of structures under the earthquake excitation. However, recent earthquakes and studies indicated that SSI may exert detrimental effects on commonly used structural systems. In this study, a numerical soil-structure model is established in Abaqus software to explore the impacts of SSI on high-rise frame-core tube structures. The seismic response of frame-core tube structures with various structural heights, height-width ratios, foundation types and soil types is studied. The numerical simulation results including maximum lateral deflections, foundation rocking, inter-storey drifts and base shears of rigid and flexible base buildings are discussed and compared. The results reveal the lateral displacement and inter-storey drifts of the superstructure can be amplified when SSI is taking into account, while the base shears are not necessarily reduced. Increasing the stiffness of the foundation and the subsoil can generally increase the seismic demand of structures. It has been concluded that it is neither safe nor economical to consider only the beneficial effects of SSI or to ignore them in structural design practice.

2022 ◽  
Vol 12 (2) ◽  
pp. 570
Dorota Błaszkiewicz-Juszczęć ◽  
Włodzimierz Czyczuła ◽  
Dariusz Kudła

In the article, an identification method of railway track stability model parameters based on energy equilibrium is presented by the authors. A study of two parameters directly influencing the continuous welded track (CWR) stability is described by the authors, i.e., the rail-sleeper structure stiffness Bz is considered one beam, and the ballast lateral resistance r0. These parameters were estimated with the use of a numerical model for various railway track types. The adopted concept is based on the assumption that it is possible to determine substitute values for both parameters. Therefore, using one value of both of these parameters, we label them substitute parameters. The assumed numerical model forced lateral displacements of a track section, and, based on the obtained track section displacement results, energy equilibrium was determined. The equilibrium takes into account the work of external load and the bending work of rail-sleeper structure with the substitute stiffness Bz and the ballast deformation work, also with the substitute value of lateral resistance r0 with lateral displacement. The aim is to identify these substitute values to be used for analysing track stability with the semi-analytical model. These analyses are part of the studies related to the development of a method of assessing various methods of increasing track stability.

Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 25
Virginio Quaglini ◽  
Carlo Pettorruso ◽  
Eleonora Bruschi ◽  
Luca Mari

Past earthquakes have highlighted the seismic vulnerability of prefabricated industrial sheds typical of past Italian building practices. Such buildings typically exhibited rigid collapse mechanisms due to the absence of rigid links between columns, beams, and roof elements. This study aims at presenting the experimental and numerical assessment of a novel dissipative connection system (DCS) designed to improve the seismic performance of prefabricated sheds. The device, which is placed on the top of columns, exploits the movement of a rigid slider on a sloped surface to dissipate seismic energy and control the lateral displacement of the beam, and to provide a recentering effect at the end of the earthquake. The backbone curve of the DCS, and the effect of vertical load, sliding velocity, and number of cycles were assessed in experimental tests conducted on a scaled prototype, according to a test protocol designed accounting for similarity requirements. In the second part of the study, non-linear dynamic analyses were performed on a finite element model of a portal frame implementing, at beam-column joints, either the DCS or a pure friction connection. The results highlighted the effectiveness of the DCS in controlling beam-to-column displacements, reducing shear forces on the top of columns, and limiting residual displacements that can accrue during ground motion sequences.

2022 ◽  
Vol 15 ◽  
Kento Hirayama ◽  
Yohei Otaka ◽  
Taichi Kurayama ◽  
Toru Takahashi ◽  
Yutaka Tomita ◽  

As humans, we constantly change our movement strategies to adapt to changes in physical functions and the external environment. We have to walk very slowly in situations with a high risk of falling, such as walking on slippery ice, carrying an overflowing cup of water, or muscle weakness owing to aging or motor deficit. However, previous studies have shown that a normal gait pattern at low speeds results in reduced efficiency and stability in comparison with those at a normal speed. Another possible strategy is to change the gait pattern from normal to step-to gait, in which the other foot is aligned with the first swing foot. However, the efficiency and stability of the step-to gait pattern at low speeds have not been investigated yet. Therefore, in this study, we compared the efficiency and stability of the normal and step-to gait patterns at intermediate, low, and very low speeds. Eleven healthy participants were asked to walk with a normal gait and step-to gait on a treadmill at five different speeds (i.e., 10, 20, 30, 40, and 60 m/min), ranging from very low to normal walking speed. The efficiency parameters (percent recovery and walk ratio) and stability parameters (center of mass lateral displacement) were analyzed from the motion capture data and then compared for the two gait patterns. The results suggested that step-to gait had a more efficient gait pattern at very low speeds of 10–30 m/min, with a larger percent recovery, and was more stable at 10–60 m/min in comparison with a normal gait. However, the efficiency of the normal gait was better than that of the step-to gait pattern at 60 m/min. Therefore, step-to gait is effective in improving gait efficiency and stability when faced with situations that force us to walk slowly or hinder quick walking because of muscle weakness owing to aging or motor deficit along with a high risk of falling.

2022 ◽  
Vol 68 (1) ◽  
Yijie Lin ◽  
Qing Chun ◽  
Chengwen Zhang ◽  
Yidan Han ◽  
Hui Fu

AbstractThe hall-style timber frame built in the Song and Yuan dynasties (960–1368 AD) is one of the most important structural prototypes of the traditional timber architecture in East Asia. The current research, through a typical case of the main hall of Baoguo Temple in Ningbo, China, aims to present an accurate and effective seismic performance evaluation method applicable to hall-style timber structures without time–cost expenditure. To obtain more realistic seismic response of hall-style timber frame, a simplified numerical model of the main hall of Baoguo Temple is established based on in situ measurements and low-cycle reversed loading tests results of mortise–tenon joints, moreover, nonlinear static pushover analysis has been performed to quantify the seismic performance levels under five loading conditions. The generalized force–deformation relationship of the timber plastic hinges is modified regarding to the moment–rotation curves of four special mortise–tenon joints. The seismic behaviour of global hall-style timber frame is evaluated through capacity spectrum method and verified by time history analysis, local failure mechanisms are evaluated by the occurrence sequence of plastic hinges. Finally, a performance-based assessment method adequate for the traditional hall-style timber architectures has been proposed with comparison to the current codes. The results have shown that the structural stiffness of the width-direction is less than that of the depth direction due to the asymmetrical configuration of the timber frame, and the building can maintain a stable state under large lateral displacement before collapsing. The inter-storey drift angles of the building under peak ground accelerations of 0.1 g, 0.2 g, and 0.3 g are less than the suggested ultimate values in the current local codes, however, the main hall represents to be more vulnerable to damage when suffer seismic action along the width-direction. This research can provide a reference for seismic performance evaluation and preventive conservation of ancient hall-style timber architectural heritage.

2022 ◽  
Vol 14 (2) ◽  
pp. 121-130
Anatolii Soltus ◽  
Ludmyla Tarandushka ◽  
Eduard Klimov ◽  
Sergii Chernenko ◽  

The results of the study of the motion of an elastic wheel as an integral mechanism along a curvilinear and a rectilinear trajectory with a slip on the ground plane having a high adhesion coefficient are presented. The previous researches analysis has shown that the most complete theory of wheel skidless rolling without slipping on elastic pneumatics was formulated by Keldysh V. M. who proposed the equation for calculating the curvature of the motion trajectory. Due to the difficulty of this equation coefficients determining, its use is currently limited. In this paper, the dependences for determining the components of the equation of the elastic wheel motion trajectory curvature have been proposed. According to the shimmy theory, during an elastic wheel rolling along a curvilinear trajectory, the rim turn and its lateral displacement relative to the tire-ground contact patch occur simultaneously. The rim turn causes tire body torsion, and the lateral displacement causes the elastic wheel moving with a slip angle. It is established that the absolute value of the tire body torsion angle is equal to the slip angle, and their values depend on the trajectory curvature, on the tire-ground contact patch longitudinal axis, and on the existence of traction there. The condition, under which the tire body energy distribution on the rim relative rotation and on its lateral displacement during the movement along a curved trajectory is uniform, has been determined. The experimental confirmation of the hypothesis of uniform distribution of the energy supplied to the elastic wheel during its movement along a curvilinear trajectory on the rim relative turning and its lateral displacement has been obtained. When the elastic wheel moves along a rectilinear trajectory with a slip, only the rim lateral displacement occurs, this displacement is accompanied by a cornering force applied in the center of the tire-ground contact patch and by the tire alining torque relative to the vertical axis passing through the contact patch geometric center. The energy consumption for the rim lateral displacement during the wheel rolling along a rectilinear trajectory with a slip has been also determined. The results of the research can be useful to professionals improving the wheeled vehicles performance characteristics, including maneuverability, handling, and road stability.

2022 ◽  
pp. 1-1
Hafiz Malik Naqash Afzal ◽  
Emma Stubbs ◽  
Heba Khamis ◽  
Alastair J Loutit ◽  
Stephen Redmond ◽  

Chimou Li ◽  
Xiaonan Li ◽  
Ming Lv ◽  
Feng Chen ◽  
Xiaoxiang Ma ◽  

With the popularization and application of conditionally automated driving systems, takeover requirements are becoming more and more frequent, and the subsequent takeover safety problems have attracted attention. The present study used functional magnetic resonance imaging (fMRI) technology, combined with driving simulation experiments, to study in depth the effects of critical degree and monitor request (MR) 30 s in advance on drivers’ visual behavior, takeover performance and brain activation. Results showed that MR can effectively improve the driver’s visual and takeover performance, including visual reaction times, fixation frequency and duration, takeover time, and takeover mode. The length of the reserved safety distance can significantly affect the distribution of longitudinal acceleration. Critical or non-critical takeover has a significant impact on the change of pupil diameter and the standard deviation of lateral displacement. Five brain regions, including the middle occipital gyrus (MOG), fusiform gyrus (FG), middle temporal gyrus (MTG), precuneus and precentral, are activated under the stimulation of a critical takeover scenario, and are related to cognitive behaviors such as visual cognition, distance perception, memory search and movement association.

2021 ◽  
Vol 30 (4) ◽  
Kourosh Talebi Jouneghani

The purpose of base isolation is to absorb earthquake energy, prolong the life of the structure, and enable the structure to be similar to a rigid body. However, since resonance can occur due to the closeness of the period of structures to the long period and large velocity pulses of the near field earthquakes, the stability of these buildings greatly reduces, and with the large displacement above isolation level, sometimes, tendency of overturning is created in isolators leading to their destruction. The main objective of this study is to significantly reduce the lateral displacement of base isolation subjected to near field earthquakes. In this research, seismic response calculation has been carried out for five steel moment frame structure with the 3, 5, 8, 11, and 14 stories in two states of with and without stiff core structure and energy dissipaters. The analyses has been done under fourteen scaled records of seven near-source and seven far-source earthquakes. It has been shown that the lateral displacement of base isolation system can be reduced by 87% for low-rise buildings, and 77% for high-rise buildings.

Sign in / Sign up

Export Citation Format

Share Document