scholarly journals A UNIFORM CONTRIBUTION OF CORE-COLLAPSE AND TYPE Ia SUPERNOVAE TO THE CHEMICAL ENRICHMENT PATTERN IN THE OUTSKIRTS OF THE VIRGO CLUSTER

2015 ◽  
Vol 811 (2) ◽  
pp. L25 ◽  
Author(s):  
A. Simionescu ◽  
N. Werner ◽  
O. Urban ◽  
S. W. Allen ◽  
Y. Ichinohe ◽  
...  
2018 ◽  
Vol 615 ◽  
pp. A162 ◽  
Author(s):  
P.-F. Léget ◽  
M. V. Pruzhinskaya ◽  
A. Ciulli ◽  
E. Gangler ◽  
G. Aldering ◽  
...  

Context. Type Ia supernovae (SNe Ia) are widely used to measure the expansion of the Universe. To perform such measurements the luminosity and cosmological redshift (z) of the SNe Ia have to be determined. The uncertainty on z includes an unknown peculiar velocity, which can be very large for SNe Ia in the virialized cores of massive clusters. Aims. We determine which SNe Ia exploded in galaxy clusters using 145 SNe Ia from the Nearby Supernova Factory. We then study how the correction for peculiar velocities of host galaxies inside the clusters improves the Hubble residuals. Methods. We found 11 candidates for membership in clusters. We applied the biweight technique to estimate the redshift of a cluster. Then, we used the galaxy cluster redshift instead of the host galaxy redshift to construct the Hubble diagram. Results. For SNe Ia inside galaxy clusters, the dispersion around the Hubble diagram when peculiar velocities are taken into account is smaller compared with a case without peculiar velocity correction, which has a wRMS = 0.130 ± 0.038 mag instead of wRMS = 0.137 ± 0.036 mag. The significance of this improvement is 3.58σ. If we remove the very nearby Virgo cluster member SN2006X (z < 0.01) from the analysis, the significance decreases to 1.34σ. The peculiar velocity correction is found to be highest for the SNe Ia hosted by blue spiral galaxies. Those SNe Ia have high local specific star formation rates and smaller stellar masses, which is seemingly counter to what might be expected given the heavy concentration of old, massive elliptical galaxies in clusters. Conclusions. As expected, the Hubble residuals of SNe Ia associated with massive galaxy clusters improve when the cluster redshift is taken as the cosmological redshift of the supernova. This fact has to be taken into account in future cosmological analyses in order to achieve higher accuracy for cosmological redshift measurements. We provide an approach to do so.


2019 ◽  
Vol 100 (3) ◽  
Author(s):  
Ryan Janish ◽  
Vijay Narayan ◽  
Paul Riggins

2011 ◽  
Vol 7 (S281) ◽  
pp. 32-33
Author(s):  
M. L. Pumo ◽  
L. Zampieri

AbstractUsing our new general-relativistic, radiation hydrodynamics, Lagrangian code, we computed a rather extended grid of hydrogen-rich core-collapse supernovae (CC-SNe) models and explored the potentials of their “standardization” as distance indicators. We discuss the properties of some calibrations previously reported in the literature, and present new correlations based on the behavior of the light curve that can be employed for calibrating hydrogen-rich CC-SNe using only photometric data.


2020 ◽  
Vol 635 ◽  
pp. A72 ◽  
Author(s):  
J. Antoniadis ◽  
S. Chanlaridis ◽  
G. Gräfener ◽  
N. Langer

Type Ia supernovae (SNe Ia) are manifestations of stars that are deficient in hydrogen and helium, and disrupt in a thermonuclear runaway. While explosions of carbon-oxygen white dwarfs are thought to account for the majority of events, part of the observed diversity may be due to varied progenitor channels. We demonstrate that helium stars with masses between ∼1.8 and 2.5 M⊙ may evolve into highly degenerate cores with near-Chandrasekhar mass and helium-free envelopes that subsequently ignite carbon and oxygen explosively at densities of ∼(1.8−5.9) × 109 g cm−3. This occurs either due to core growth from shell burning (when the core has a hybrid CO/NeO composition), or following ignition of residual carbon triggered by exothermic electron captures on 24Mg (for a NeOMg-dominated composition). We argue that the resulting thermonuclear runaway is likely to prevent core collapse, leading to the complete disruption of the star. The available nuclear energy at the onset of explosive oxygen burning suffices to create ejecta with a kinetic energy of ∼1051 erg, as in typical SNe Ia. Conversely, if these runaways result in partial disruptions, the corresponding transients would resemble SN Iax events similar to SN 2002cx. If helium stars in this mass range indeed explode as SNe Ia, then the frequency of events would be comparable to the observed SN Ib/c rates, thereby sufficing to account for the majority of SNe Ia in star-forming galaxies.


2015 ◽  
Author(s):  
Miguel Perez-Torres ◽  
A Alberdi ◽  
R. J. Beswick ◽  
P Lundqvist ◽  
R Herrero-Illana ◽  
...  

2008 ◽  
Vol 8 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Wen Guo ◽  
Feng-Hui Zhang ◽  
Xiang-Cun Meng ◽  
Zhong-Mu Li ◽  
Zhan-Wen Han

2021 ◽  
Vol 118 (8) ◽  
pp. e2017750118
Author(s):  
Makiko K. Haba ◽  
Yi-Jen Lai ◽  
Jörn-Frederik Wotzlaw ◽  
Akira Yamaguchi ◽  
Maria Lugaro ◽  
...  

The niobium-92–zirconium-92 (92Nb–92Zr) decay system with a half-life of 37 Ma has great potential to date the evolution of planetary materials in the early Solar System. Moreover, the initial abundance of the p-process isotope 92Nb in the Solar System is important for quantifying the contribution of p-process nucleosynthesis in astrophysical models. Current estimates of the initial 92Nb/93Nb ratios have large uncertainties compromising the use of the 92Nb–92Zr cosmochronometer and leaving nucleosynthetic models poorly constrained. Here, the initial 92Nb abundance is determined to high precision by combining the 92Nb–92Zr systematics of cogenetic rutiles and zircons from mesosiderites with U–Pb dating of the same zircons. The mineral pair indicates that the 92Nb/93Nb ratio of the Solar System started with (1.66 ± 0.10) × 10−5, and their 92Zr/90Zr ratios can be explained by a three-stage Nb–Zr evolution on the mesosiderite parent body. Because of the improvement by a factor of 6 of the precision of the initial Solar System 92Nb/93Nb, we can show that the presence of 92Nb in the early Solar System provides further evidence that both type Ia supernovae and core-collapse supernovae contributed to the light p-process nuclei.


2019 ◽  
Vol 45 (5) ◽  
pp. 259-275
Author(s):  
Yu. V. Pakhomov ◽  
L. I. Mashonkina ◽  
T. M. Sitnova ◽  
P. Jablonka

1998 ◽  
Vol 492 (1) ◽  
pp. 228-245 ◽  
Author(s):  
P. Hoflich ◽  
J. C. Wheeler ◽  
A. Khokhlov

Sign in / Sign up

Export Citation Format

Share Document