helium stars
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 14)

H-INDEX

25
(FIVE YEARS 3)

2020 ◽  
Vol 41 (1) ◽  
Author(s):  
Anirban Bhowmick ◽  
Gajendra Pandey ◽  
David L. Lambert
Keyword(s):  

2020 ◽  
Vol 501 (1) ◽  
pp. 623-642
Author(s):  
C S Jeffery ◽  
B Miszalski ◽  
E Snowdon

ABSTRACT A medium- and high-resolution spectroscopic survey of helium-rich hot subdwarfs is being carried out using the Southern African Large Telescope (SALT). Objectives include the discovery of exotic hot subdwarfs and of sequences connecting chemically peculiar subdwarfs of different types. The first phase consists of medium-resolution spectroscopy of over 100 stars selected from low-resolution surveys. This paper describes the selection criteria, and the observing, classification, and analysis methods. It presents 107 spectral classifications on the MK-like Drilling system and 106 coarse analyses (${T_{\rm eff}}, \log g, \log y$) based on a hybrid grid of zero-metal non-LTE and line-blanketed LTE model atmospheres. For 75 stars, atmospheric parameters have been derived for the first time. The sample may be divided into six distinct groups including the classical ‘helium-rich’ sdO stars with spectral types (Sp) sdO6.5–sdB1 (74) comprising carbon-rich (35) and carbon-weak (39) stars, very hot He-sdO’s with Sp ≲ sdO6 (13), extreme helium stars with luminosity class ≲5 (5), intermediate helium-rich subdwarfs with helium class 25–35 (8), and intermediate helium-rich subdwarfs with helium class 10–25 (6). The last covers a narrow spectral range (sdB0–sdB1) including two known and four candidate heavy-metal subdwarfs. Within other groups are several stars of individual interest, including an extremely metal-poor helium star, candidate double-helium subdwarf binaries, and a candidate low-gravity He-sdO star.


2020 ◽  
Vol 499 (1) ◽  
pp. 873-892
Author(s):  
Andreas A C Sander ◽  
Jorick S Vink

ABSTRACT The mass-loss rates of massive helium stars are one of the major uncertainties in modern astrophysics. Regardless of whether they were stripped by a binary companion or managed to peel off their outer layers by themselves, the influence and final fate of helium stars – in particular the resulting black hole mass – highly depends on their wind mass-loss as stripped-envelope objects. While empirical mass-loss constraints for massive helium stars have improved over the last decades, the resulting recipes are limited to metallicities with the observational ability to sufficiently resolve individual stars. Yet, theoretical efforts have been hampered by the complexity of Wolf–Rayet (WR) winds arising from the more massive helium stars. In an unprecedented effort, we calculate next-generation stellar atmosphere models resembling massive helium main-sequence stars with Fe-bump driven winds up to $500\, \mathrm{M}_\odot$ over a wide metallicity range between 2.0 and $0.02\, \mathrm{Z}_\odot$. We uncover a complex Γe-dependency of WR-type winds and their metallicity-dependent breakdown. The latter can be related to the onset of multiple scattering, requiring higher L/M-ratios at lower metallicity. Based on our findings, we derive the first ever theoretically motivated mass-loss recipe for massive helium stars. We also provide estimates for Lyman continuum and $\rm{He\,{\small II}}$ ionizing fluxes, finding stripped helium stars to contribute considerably at low metallicity. In sharp contrast to OB-star winds, the mass-loss for helium stars scales with the terminal velocity. While limited to the helium main sequence, our study marks a major step towards a better theoretical understanding of helium star evolution.


2020 ◽  
Vol 642 ◽  
pp. A106 ◽  
Author(s):  
Luc Dessart ◽  
Sung-Chul Yoon ◽  
David R. Aguilera-Dena ◽  
Norbert Langer

Much difficulty has so far prevented the emergence of a consistent scenario for the origin of Type Ib and Ic supernovae (SNe). Either the SN rates or the ejecta masses and composition were in tension with inferred properties from observations. Here, we follow a heuristic approach by examining the fate of helium stars in the mass range from 4 to 12 M⊙, which presumably form in interacting binaries. The helium stars were evolved using stellar wind mass loss rates that agree with observations and which reproduce the observed luminosity range of galactic Wolf-Rayet stars, leading to stellar masses at core collapse in the range from 3 to 5.5 M⊙. We then exploded these models adopting an explosion energy proportional to the ejecta mass, which is roughly consistent with theoretical predictions. We imposed a fixed 56Ni mass and strong mixing. The SN radiation from 3 to 100 d was computed self-consistently, starting from the input stellar models using the time-dependent nonlocal thermodynamic equilibrium radiative-transfer code CMFGEN. By design, our fiducial models yield very similar light curves, with a rise time of about 20 d and a peak luminosity of ~1042.2 erg s−1, which is in line with representative SNe Ibc. The less massive progenitors retain a He-rich envelope and reproduce the color, line widths, and line strengths of a representative sample of SNe Ib, while stellar winds remove most of the helium in the more massive progenitors, whose spectra match typical SNe Ic in detail. The transition between the predicted Ib-like and Ic-like spectra is continuous, but it is sharp, such that the resulting models essentially form a dichotomy. Further models computed with varying explosion energy, 56Ni mass, and long-term power injection from the remnant show that a moderate variation of these parameters can reproduce much of the diversity of SNe Ibc. We conclude that massive stars stripped by a binary companion can account for the vast majority of ordinary Type Ib and Ic SNe and that stellar wind mass loss is the key to removing the helium envelope in the progenitors of SNe Ic.


2020 ◽  
Vol 641 ◽  
pp. A86
Author(s):  
B. Hastings ◽  
N. Langer ◽  
G. Koenigsberger

Context. Steady-state currents, so-called Eddington–Sweet circulation, result in the mixing of chemical elements in rotating stars, and in extreme cases lead to a homogeneous composition. Such circulation currents are also predicted in tidally deformed binary stars, which are thought to be progenitors of double black-hole merger events. Aims. This work aims to quantitatively characterise the steady-state circulation currents in components of a tidally locked binary system and to explore the effects of such currents on numerical models. Methods. Previous results describing the circulation velocity in a single rotating star and a tidally and rotationally distorted binary star are used to deduce a new prescription for the internal circulation in tidally locked binaries. We explore the effect of this prescription numerically with a detailed stellar evolution code for binary systems with initial orbital periods between 0.5 and 2.0 days, primary masses between 25 and 100 M⊙ and initial mass-ratios qi = 0.5, 0.7, 0.9, 1.0 at metallicity Z = Z⊙/50. Results. When comparing circulation velocities in the radial direction for the cases of a single rotating star and a binary star, it is found that the average circulation velocity in the binary star may be described as an enhancement to the circulation velocity in a single rotating star. This velocity enhancement is a simple function depending on the masses of the binary components and amounts to a factor of approximately two when the components have equal masses. After applying this enhancement to stellar models, it is found that the formation of double helium stars through efficient mixing occurs for systems with higher initial orbital periods, lower primary masses and lower mass ratios, compared to the standard circulation scenario. Taking into account appropriate distributions for primary mass, initial period and mass ratio, models with enhanced mixing predict 2.4 times more double helium stars being produced in the parameter space than models without. Conclusions. We conclude that the effects of companion-induced circulation have strong implications for the formation of close binary black holes through the chemically homogeneous evolution channel. Not only do the predicted detection rates increase but double black-hole systems with mass ratios as low as 0.8 may be formed when companion-induced circulation is taken into account.


2020 ◽  
Vol 495 (1) ◽  
pp. L135-L138 ◽  
Author(s):  
C Simon Jeffery ◽  
Geert Barentsen ◽  
Gerald Handler

ABSTRACT PV Tel variables are extreme helium (EHe) stars known to be intrinsic light and velocity variable on characteristic time-scales of 0.1–25 d. With two exceptions, they are best described as irregular. Light curves have invariably been obtained from single-site terrestrial observatories. We present Transiting Exoplanet Survey Satellite observations of two bright EHe stars, Popper’s star (V821 Cen) and Thackeray’s star (PV Tel). PV Tel is variable on time-scales previously reported. V821 Cen is proven to be variable for the first time. Neither light curve shows any evidence of underlying regularity. Implications are considered.


2020 ◽  
Vol 496 (1) ◽  
pp. L6-L10 ◽  
Author(s):  
L R Yungelson ◽  
A G Kuranov ◽  
K A Postnov ◽  
D A Kolesnikov

ABSTRACT We model the Galactic population of detached binaries that harbour black holes with 0.5–1.7 M⊙ companions – remnants of case B mass exchange that rapidly cross Hertzsprung gap after the termination of the Roche lobe overflow or as He-shell burning stars. Several such binaries can be currently present in the Galaxy. The range of MBH in them is about 4–10 M⊙, and the orbital periods are tens to hundreds of days. The unique black hole binary LB-1 fits well into this extremely rare class of double stars.


2020 ◽  
Vol 891 (1) ◽  
pp. 40 ◽  
Author(s):  
Anirban Bhowmick ◽  
Gajendra Pandey ◽  
David L. Lambert
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document