photometric data
Recently Published Documents


TOTAL DOCUMENTS

465
(FIVE YEARS 93)

H-INDEX

30
(FIVE YEARS 7)

2021 ◽  
Vol 923 (1) ◽  
pp. 44
Author(s):  
Jennifer E. Scott ◽  
Emileigh S. Shoemaker ◽  
Colin D. Hamill

Abstract We present a study of candidate galaxy–absorber pairs for 43 low-redshift QSO sightlines (0.06 < z < 0.85) observed with the Hubble Space Telescope/Cosmic Origins Spectrograph that lie within the footprint of the Sloan Digital Sky Survey with a statistical approach to match absorbers with galaxies near the QSO lines of sight using only the SDSS Data Release 12 photometric data for the galaxies, including estimates of their redshifts. Our Bayesian methods combine the SDSS photometric information with measured properties of the circumgalactic medium to find the most probable galaxy match, if any, for each absorber in the line-of-sight QSO spectrum. We find ∼630 candidate galaxy–absorber pairs using two different statistics. The methods are able to reproduce pairs reported in the targeted spectroscopic studies upon which we base the statistics at a rate of 72%. The properties of the galaxies comprising the candidate pairs have median redshift, luminosity, and stellar mass, all estimated from the photometric data, z = 0.13, L = 0.1L *, and log ( M * / M ⊙ ) = 9.7 . The median impact parameter of the candidate pairs is ∼430 kpc, or ∼3.5 times the galaxy virial radius. The results are broadly consistent with the high Lyα covering fraction out to this radius found in previous studies. This method of matching absorbers and galaxies can be used to prioritize targets for spectroscopic studies, and we present specific examples of promising systems for such follow-up.


2021 ◽  
Vol 923 (1) ◽  
pp. 23
Author(s):  
Brian F. Healy ◽  
P. R. McCullough ◽  
Kevin C. Schlaufman

Abstract We analyze spectroscopic and photometric data to determine the projected inclinations of stars in three open clusters: the Pleiades, Praesepe, and M35. We determine the sin i values of 42, 35, and 67 stars in each cluster, respectively, and from their distributions we find that isotropic spins and moderate alignment are both consistent with the Pleiades and Praesepe data. While it is difficult to distinguish between these scenarios for a single cluster, an ensemble of such distributions may facilitate a distinction. The M35 inclination distribution is most consistent with a superposition of isotropic and anisotropic spins, the source of which could be systematic error or a physical grouping of aligned stars. We also study internal cluster kinematics using radial velocities and proper motions. Our kinematics analysis reveals significant plane-of-sky rotation in Praesepe, with a mean velocity of 0.132 ± 0.022 km s−1 in a clockwise direction.


2021 ◽  
Vol 5 (11) ◽  
pp. 268
Author(s):  
Rahul Jayaraman ◽  
Donald W. Kurtz ◽  
Gerald Handler ◽  
Saul Rappaport ◽  
George Ricker

Abstract We present two new rapidly oscillating Ap (roAp) stars, TIC 198781841 and TIC 229960986, discovered in TESS photometric data. The periodogram of TIC 198781841 has a large peak at 166.506 day−1 (1.93 mHz), with two nearby peaks at 163.412 day−1 (1.89 mHz) and 169.600 day−1 (1.96 mHz). These correspond to three independent high-overtone pressure modes, with alternating even and odd ℓ values. TIC 229960986 has a high-frequency triplet centered at 191.641 day−1 (2.218 mHz), with sidebands at 191.164 day−1 (2.213 mHz) and 192.119 day−1 (2.224 mHz). This pulsation appears to be a rotationally split dipole mode, with sideband amplitudes significantly larger than that of the central peak; hence, both pulsation poles are seen over the rotation cycle. Our photometric identification of two new roAp stars underscores the remarkable ability of TESS to identify high-frequency pulsators without spectroscopic observations.


2021 ◽  
Author(s):  
◽  
Michael L. J. Miller

<p>This thesis describes and develops procedures for the generation of theoretical lightcurves that can be used to model gravitational microlensing events that involve multiple lenses. Of particular interest are the cases involving a single lens star with one or more orbiting planets, as this has proven to be an effective way of detecting extrasolar planets. Although there is an analytical expression for microlensing lightcurves produced by single lensing body, the generation of model lightcurves for more than one lensing body requires the use of numerical techniques. The method developed here, known as the semi-analytic method, involves the analytical rearrangement of the relatively simple ‘lens equation’ to produce a high-order complex lens polynomial. Root-finding algorithms are then used to obtain the roots of this ‘lens polynomial’ in order to locate the positions of the images and calculate their magnifications. By running example microlensing events through the root-finding algorithms, both the speed and accuracy of the Laguerre and Jenkins-Traub algorithms were investigated. It was discovered that, in order to correctly identify the image positions, a method involving solutions of several ‘lens polynomials’ corresponding to different coordinate origins needed to be invoked. Multipole and polygon approximations were also developed to include finite source and limb darkening effects. The semi-analytical method and the appropriate numerical techniques were incorporated into a C++ modelling code at VUW (Victoria University of Wellington) known as mlens2. The effectiveness of the semi-analytic method was demonstrated using mlens2 to generate theoretical lightcurves for the microlensing events MOA-2009-BLG-319 and OGLE-2006-BLG-109. By comparing these theoretical lightcurves with the observed photometric data and the published models, it was demonstrated that the semi-analytic method described in this thesis is a robust and efficient method for discovering extrasolar planets.</p>


2021 ◽  
Author(s):  
◽  
Michael L. J. Miller

<p>This thesis describes and develops procedures for the generation of theoretical lightcurves that can be used to model gravitational microlensing events that involve multiple lenses. Of particular interest are the cases involving a single lens star with one or more orbiting planets, as this has proven to be an effective way of detecting extrasolar planets. Although there is an analytical expression for microlensing lightcurves produced by single lensing body, the generation of model lightcurves for more than one lensing body requires the use of numerical techniques. The method developed here, known as the semi-analytic method, involves the analytical rearrangement of the relatively simple ‘lens equation’ to produce a high-order complex lens polynomial. Root-finding algorithms are then used to obtain the roots of this ‘lens polynomial’ in order to locate the positions of the images and calculate their magnifications. By running example microlensing events through the root-finding algorithms, both the speed and accuracy of the Laguerre and Jenkins-Traub algorithms were investigated. It was discovered that, in order to correctly identify the image positions, a method involving solutions of several ‘lens polynomials’ corresponding to different coordinate origins needed to be invoked. Multipole and polygon approximations were also developed to include finite source and limb darkening effects. The semi-analytical method and the appropriate numerical techniques were incorporated into a C++ modelling code at VUW (Victoria University of Wellington) known as mlens2. The effectiveness of the semi-analytic method was demonstrated using mlens2 to generate theoretical lightcurves for the microlensing events MOA-2009-BLG-319 and OGLE-2006-BLG-109. By comparing these theoretical lightcurves with the observed photometric data and the published models, it was demonstrated that the semi-analytic method described in this thesis is a robust and efficient method for discovering extrasolar planets.</p>


2021 ◽  
Vol 922 (1) ◽  
pp. 37
Author(s):  
Jian-Wen Ou ◽  
Cong Yu ◽  
Ming Yang ◽  
Chen Jiang ◽  
Bo Ma ◽  
...  

Abstract Apsidal motion is a gradual shift in the position of periastron. The impact of dynamic tides on apsidal motion has long been debated, because the contribution could not be quantified due to the lack of high-quality observations. KIC 4544587 with tidally excited oscillations has been observed by Kepler high-precision photometric data based on long-time-baseline and short-cadence schema. In this paper, we compute the rate of apsidal motion that arises from the dynamic tides as 19.05 ± 1.70 mrad yr−1 via tracking the orbital phase shifts of tidally excited oscillations. We also calculate the procession rate of the orbit due to the Newtonian and general relativistic contribution as 21.49 ± 2.8 and 2.4 ± 0.06 mrad yr−1, respectively. The sum of these three factors is in excellent agreement with the total observational rate of apsidal motion 42.97 ± 0.18 mrad yr−1 measured by eclipse timing variations. The tidal effect accounts for about 44% of the overall observed apsidal motion and is comparable to that of the Newtonian term. Dynamic tides have a significant contribution to the apsidal motion. The analysis method mentioned in this paper presents an alternative approach to measuring the contribution of the dynamic tides quantitatively.


Author(s):  
M L Novarino ◽  
M Echeveste ◽  
O G Benvenuto ◽  
M A De Vito ◽  
G A Ferrero

Abstract The standard model of stellar evolution in Close Binary Systems assumes that during mass transfer episodes the system is in a synchronised and circularised state. Remarkably, the redback system PSR J1723-2837 has an orbital period derivative $\dot{P}_{orb}$ too large to be explained by this model. Motivated by this fact, we investigate the action of tidal forces in between two consecutive mass transfer episodes for a system under irradiation feedback, which is a plausible progenitor for PSR J1723-2837. We base our analysis on Hut’s treatment of equilibrium tidal evolution, generalised by considering the donor as a two layers object that may not rotate as a rigid body. We also analyse three different relations for the viscosity with the tidal forcing frequency. We found that the large value measured for $\dot{P}_{orb}$ can be reached by systems where the donor star rotates slower (by few per cent) than the orbit just after mass transfer episodes. Van Staden & Antoniadis have observed this object and reported a lack of synchronism, opposite to that required by the Hut’s theory to account for the observed $\dot{P}_{orb}$. Motivated by this discrepancy, we analyse photometric data obtained by the spacecraft Kepler second mission K2, with the purpose of identifying the periods present in PSR J1723-2837. We notice several periods close to those of the orbit and the rotation. The obtained periods pattern reveals the presence of a more complex phenomenology, which would not be well described in the frame of the weak friction model of equilibrium tides.


2021 ◽  
Vol 507 (3) ◽  
pp. 3444-3460
Author(s):  
P Rousselot ◽  
A Kryszczyńska ◽  
P Bartczak ◽  
I Kulyk ◽  
K Kamiński ◽  
...  

ABSTRACT Since 2005 December, recurrent outbursts have been observed for Centaur 174/P Echeclus, confirming it is an active object. Thanks to a large number of photometric data obtained between 2001 April and 2019 December, we were able to compute a shape model of this object. We obtain a sidereal rotation period P = 26.785178 ± 10−6 h and six equally probable pole solutions, each with a large obliquity of the rotational axis (50° or more). We also find the object significantly elongated, with a semi-major axial ratio a/b = 1.32 (and b/c ∼ 1.1 but this second ratio is poorly constrained by the photometric data). Additionally, we present a detailed analysis of the dust emission from the 2016 outburst. Different colour maps are presented that reveal a change in dust colour, which becomes bluer with increasing cometocentric distance. A blue ring-like structure around the nucleus clearly visible in the images obtained on October 4 in the V-R spectral interval points out that the innermost near nucleus region is considerably redder than the surrounding coma. Different jets are also apparent, the main one being oriented southward. A detailed dynamical study is done to investigate past and future orbital elements. These elements appear stable in the period ≈1200 CE to ≈2900 CE. For a period of 12 000 yr the main conclusion is that Echeclus’ perihelion distance was greater than about 4 au, preventing it from following a typical cometary activity like a short-period comet. Close encounters with giant planets nevertheless prevent any study of orbital elements on longer timescale.


Sign in / Sign up

Export Citation Format

Share Document