Density functional theory study on the transition metal atoms encapsulated C20 cage clusters

2018 ◽  
Vol 5 (6) ◽  
pp. 065605 ◽  
Author(s):  
Zhen Zhao ◽  
Zhi Li ◽  
Qi Wang
2008 ◽  
Vol 15 (05) ◽  
pp. 567-579 ◽  
Author(s):  
WEI FAN ◽  
XIN-GAO GONG

Based on the Density Functional Theory (DFT) with noncollinear-magnetism formulations, we have calculated the magnetism of single 3d transition-metal atoms and the magnetic anisotropies of supported Ni chains on the Au(110)-(1 × 2) surface. Our results for single absorbed 3d transition-metal atoms show that the surface relaxations enhance the orbital moments of left-end elements (Ti, V) and quenches the orbital moments of right-end elements (Fe, Co, Ni) on the Au(110)-(1 × 2) surface. The magnetic anisotropies of Ni atomic chains on the surface are closely related to orbital quenching. The easy magnetized axes change from the direction parallel to the chains to the direction perpendicular to the Ni chains when they absorb on the surface.


2021 ◽  
Vol 23 (1) ◽  
pp. 506-513
Author(s):  
Fei Liu ◽  
Yujie Liao ◽  
Yanbing Wu ◽  
Zongyu Huang ◽  
Huating Liu ◽  
...  

We performed density functional theory calculations to investigate the electronic and magnetic properties of h-BN/MoS2 heterostructures intercalated with 3d transition-metal (TM) atoms, including V, Cr, Mn, Fe, Co, and Ni atoms.


Sign in / Sign up

Export Citation Format

Share Document