scholarly journals Rank-deficient representations in the theta correspondence over finite fields arise from quantum codes

2021 ◽  
Vol 25 (8) ◽  
pp. 193-223
Author(s):  
Felipe Montealegre-Mora ◽  
David Gross

Author(s):  
Stefano Lia ◽  
Marco Timpanella

AbstractIn Beelen and Montanucci (Finite Fields Appl 52:10–29, 2018) and Giulietti and Korchmáros (Math Ann 343:229–245, 2009), Weierstrass semigroups at points of the Giulietti–Korchmáros curve $${\mathcal {X}}$$ X were investigated and the sets of minimal generators were determined for all points in $${\mathcal {X}}(\mathbb {F}_{q^2})$$ X ( F q 2 ) and $${\mathcal {X}}(\mathbb {F}_{q^6})\setminus {\mathcal {X}}( \mathbb {F}_{q^2})$$ X ( F q 6 ) \ X ( F q 2 ) . This paper completes their work by settling the remaining cases, that is, for points in $${\mathcal {X}}(\overline{\mathbb {F}}_{q}){\setminus }{\mathcal {X}}( \mathbb {F}_{q^6})$$ X ( F ¯ q ) \ X ( F q 6 ) . As an application to AG codes, we determine the dimensions and the lengths of duals of one-point codes from a point in $${\mathcal {X}}(\mathbb {F}_{q^7}){\setminus }{\mathcal {X}}( \mathbb {F}_{q})$$ X ( F q 7 ) \ X ( F q ) and we give a bound on the Feng–Rao minimum distance $$d_{ORD}$$ d ORD . For $$q=3$$ q = 3 we provide a table that also reports the exact values of $$d_{ORD}$$ d ORD . As a further application we construct quantum codes from $$\mathbb {F}_{q^7}$$ F q 7 -rational points of the GK-curve.



2020 ◽  
Vol 306 (2) ◽  
pp. 587-609
Author(s):  
Dongwen Liu ◽  
Zhicheng Wang


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 712
Author(s):  
Lijuan Xing ◽  
Zhuo Li

Quantum error correcting codes (QECCs) play an important role in preventing quantum information decoherence. Good quantum stabilizer codes were constructed by classical error correcting codes. In this paper, Bose–Chaudhuri–Hocquenghem (BCH) codes over finite fields are used to construct quantum codes. First, we try to find such classical BCH codes, which contain their dual codes, by studying the suitable cyclotomic cosets. Then, we construct nonbinary quantum BCH codes with given parameter sets. Finally, a new family of quantum BCH codes can be realized by Steane’s enlargement of nonbinary Calderbank-Shor-Steane (CSS) construction and Hermitian construction. We have proven that the cyclotomic cosets are good tools to study quantum BCH codes. The defining sets contain the highest numbers of consecutive integers. Compared with the results in the references, the new quantum BCH codes have better code parameters without restrictions and better lower bounds on minimum distances. What is more, the new quantum codes can be constructed over any finite fields, which enlarges the range of quantum BCH codes.



Author(s):  
Rudolf Lidl ◽  
Harald Niederreiter
Keyword(s):  






2018 ◽  
Vol 43 (1-4) ◽  
pp. 13-45
Author(s):  
Prof. P. L. Sharma ◽  
◽  
Mr. Arun Kumar ◽  
Mrs. Shalini Gupta ◽  
◽  
...  


2020 ◽  
Vol 25 (4) ◽  
pp. 4-9
Author(s):  
Yerzhan R. Baissalov ◽  
Ulan Dauyl

The article discusses primitive, linear three-pass protocols, as well as three-pass protocols on associative structures. The linear three-pass protocols over finite fields and the three-pass protocols based on matrix algebras are shown to be cryptographically weak.



Vestnik MEI ◽  
2018 ◽  
Vol 5 (5) ◽  
pp. 79-88
Author(s):  
Sergey B. Gashkov ◽  
◽  
Aleksandr B. Frolov ◽  
Elizaveta Р. Popova ◽  
◽  
...  


Sign in / Sign up

Export Citation Format

Share Document