bch codes
Recently Published Documents


TOTAL DOCUMENTS

516
(FIVE YEARS 94)

H-INDEX

26
(FIVE YEARS 3)

2022 ◽  
Vol 10 (1) ◽  
pp. 91
Author(s):  
Mohsin Murad ◽  
Imran A. Tasadduq ◽  
Pablo Otero

We propose an effective, low complexity and multifaceted scheme for peak-to-average power ratio (PAPR) reduction in the orthogonal frequency division multiplexing (OFDM) system for underwater acoustic (UWA) channels. In UWA OFDM systems, PAPR reduction is a challenging task due to low bandwidth availability along with computational and power limitations. The proposed scheme takes advantage of XOR ciphering and generates ciphered Bose–Chaudhuri–Hocquenghem (BCH) codes that have low PAPR. This scheme is based upon an algorithm that computes several keys offline, such that when the BCH codes are XOR-ciphered with these keys, it lowers the PAPR of BCH-encoded signals. The subsequent low PAPR modified BCH codes produced using the chosen keys are used in transmission. This technique is ideal for UWA systems as it does not require additional computational power at the transceiver during live transmission. The advantage of the proposed scheme is threefold. First, it reduces the PAPR; second, since it uses BCH codes, the bit error rate (BER) of the system improves; and third, a level of encryption is introduced via XOR ciphering, enabling secure communication. Simulations were performed in a realistic UWA channel, and the results demonstrated that the proposed scheme could indeed achieve all three objectives with minimum computational power.


2022 ◽  
pp. 47-80
Author(s):  
L. R. Vermani
Keyword(s):  

Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 5
Author(s):  
Francisco Revson Fernandes Pereira ◽  
Stefano Mancini

A general framework describing the statistical discrimination of an ensemble of quantum channels is given by the name quantum reading. Several tools can be applied in quantum reading to reduce the error probability in distinguishing the ensemble of channels. Classical and quantum codes can be envisioned for this goal. The aim of this paper is to present a simple but fruitful protocol for this task using classical error-correcting codes. Three families of codes are considered: Reed–Solomon codes, BCH codes, and Reed–Muller codes. In conjunction with the use of codes, we also analyze the role of the receiver. In particular, heterodyne and Dolinar receivers are taken into consideration. The encoding and measurement schemes are connected by the probing step. As probes, we consider coherent states. In such a simple manner, interesting results are obtained. As we show, there is a threshold below which using codes surpass optimal and sophisticated schemes for any fixed rate and code. BCH codes in conjunction with Dolinar receiver turn out to be the optimal strategy for error mitigation in quantum reading.


2021 ◽  
Vol 42 (8) ◽  
pp. 1723-1764
Author(s):  
Jean Armand Tsimi ◽  
Rose Christelle Youdom
Keyword(s):  

2021 ◽  
pp. 523-532
Author(s):  
Driss Khebbou ◽  
Reda Benkhouya ◽  
Idriss Chana

Sign in / Sign up

Export Citation Format

Share Document