scholarly journals Explicit lower bounds for linear forms

2016 ◽  
Vol 85 (302) ◽  
pp. 2995-3008
Author(s):  
Kalle Leppälä
Keyword(s):  
1982 ◽  
Vol 25 (1) ◽  
pp. 37-69 ◽  
Author(s):  
Xu Guangshan ◽  
Wang Lianxiang

We apply methods of Mahler to obtain explicit lower bounds for certain combinations of E-functions satisfying systems of linear differential equations as studied by Makarov. Our results sharpen and generalise earlier results of Mahler, Shidlovskii, and Väänänen.


2008 ◽  
Vol 60 (3) ◽  
pp. 491-519 ◽  
Author(s):  
Yann Bugeaud ◽  
Maurice Mignotte ◽  
Samir Siksek

AbstractWe solve several multi-parameter families of binomial Thue equations of arbitrary degree; for example, we solve the equation5uxn − 2r3s yn = ±1,in non-zero integers x, y and positive integers u, r, s and n ≥ 3. Our approach uses several Frey curves simultaneously, Galois representations and level-lowering, new lower bounds for linear forms in 3 logarithms due to Mignotte and a famous theorem of Bennett on binomial Thue equations.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 639 ◽  
Author(s):  
Pavel Trojovský

In this paper, we prove that F 22 = 17711 is the largest Fibonacci number whose decimal expansion is of the form a b … b c … c . The proof uses lower bounds for linear forms in three logarithms of algebraic numbers and some tools from Diophantine approximation.


2015 ◽  
Vol 18 (1) ◽  
pp. 633-646 ◽  
Author(s):  
Michael A. Bennett ◽  
Amir Ghadermarzi

We solve the Diophantine equation$Y^{2}=X^{3}+k$for all nonzero integers$k$with$|k|\leqslant 10^{7}$. Our approach uses a classical connection between these equations and cubic Thue equations. The latter can be treated algorithmically via lower bounds for linear forms in logarithms in conjunction with lattice-basis reduction.


2005 ◽  
Vol 77 (3-4) ◽  
pp. 573-579
Author(s):  
T. Hessami Pilehrood ◽  
H. Hessami Pilehrood
Keyword(s):  

2001 ◽  
Vol 53 (5) ◽  
pp. 897-922 ◽  
Author(s):  
Michael A. Bennett

AbstractIn this paper, we establish a number of theorems on the classic Diophantine equation of S. S. Pillai, ax – by = c, where a, b and c are given nonzero integers with a, b ≥ 2. In particular, we obtain the sharp result that there are at most two solutions in positive integers x and y and deduce a variety of explicit conditions under which there exists at most a single such solution. These improve or generalize prior work of Le, Leveque, Pillai, Scott and Terai. The main tools used include lower bounds for linear forms in the logarithms of (two) algebraic numbers and various elementary arguments.


Sign in / Sign up

Export Citation Format

Share Document