classical approach
Recently Published Documents


TOTAL DOCUMENTS

793
(FIVE YEARS 160)

H-INDEX

34
(FIVE YEARS 3)

2022 ◽  
Vol 12 (2) ◽  
pp. 571
Author(s):  
Corentin Gouache ◽  
Pierre Tinard ◽  
François Bonneau

Mainland France is characterized by low-to-moderate seismic activity, yet it is known that major earthquakes could strike this territory (e.g., Liguria in 1887 or Basel in 1356). Assessing this French seismic hazard is thus necessary in order to support building codes and to lead prevention actions towards the population. The Probabilistic Seismic Hazard Assessment (PSHA) is the classical approach used to estimate the seismic hazard. One way to apply PSHA is to generate synthetic earthquakes by propagating information from past seismicity and building various seismic scenarios. In this paper, we present an implementation of a stochastic generator of earthquakes and discuss its relevance to mimic the seismicity of low-to-moderate seismic areas. The proposed stochastic generator produces independent events (main shocks) and their correlated seismicity (only aftershocks). Main shocks are simulated first in time and magnitude considering all available data in the area, and then localized in space with the use of a probability map and regionalization. Aftershocks are simulated around main shocks by considering both the seismic moment ratio and distribution of the aftershock’s proportion. The generator is tested with mainland France data.


Author(s):  
A. I. Kashpar ◽  
V. N. Laptinskiy

The present paper presents two analytical methods for calculating the steady-state temperature field in a circular cylindrical shell. The effectiveness of the methods in terms of accuracy in comparison with the classical approach, based on Bessel functions, is analyzed. The proposed analytical algorithms contain relatively simple computational operations. Since they do not use special functions, the algorithms can be used to solve a wide range of problems.


2021 ◽  
Vol 12 ◽  
Author(s):  
Antonio J. Osuna-Mascaró ◽  
Alice M. I. Auersperg

Despite countless anecdotes and the historical significance of insight as a problem solving mechanism, its nature has long remained elusive. The conscious experience of insight is notoriously difficult to trace in non-verbal animals. Although studying insight has presented a significant challenge even to neurobiology and psychology, human neuroimaging studies have cleared the theoretical landscape, as they have begun to reveal the underlying mechanisms. The study of insight in non-human animals has, in contrast, remained limited to innovative adjustments to experimental designs within the classical approach of judging cognitive processes in animals, based on task performance. This leaves no apparent possibility of ending debates from different interpretations emerging from conflicting schools of thought. We believe that comparative cognition has thus much to gain by embracing advances from neuroscience and human cognitive psychology. We will review literature on insight (mainly human) and discuss the consequences of these findings to comparative cognition.


2021 ◽  
Vol 34 (4) ◽  
pp. 475-479
Author(s):  
Toir Makhsudovich Radzhabov

This study considers a variant of the realization of Dirac’s ideas regarding the limited number of Faraday force lines and allowance for the finite size of microparticles in physical theory. It is shown that within the framework of the classical approach, consideration of the limited number of Faraday force lines opens additional possibilities for describing and characterizing the physical field and associated phenomena. Specifically, it is shown that it becomes possible to obtain in a facile manner an expression for describing the discrete radiation of an atom, which agrees well with the empirical Balmer relation. An assumption is made about the possibility of the material existence of Faraday force lines as structural elements of the physical field. It is suggested that the natural fields of physical bodies can be considered as a set of materially existing lines of force, i.e., as a luminiferous ether.


2021 ◽  
Vol 152 (A1) ◽  
Author(s):  
I Bačkalov

The author was previously involved in the development of the risk-based stability analysis which is now further extended, and used for the safety assessment of estuary container vessels subjected to stochastic action of beam wind and irregular waves. The study was motivated by the new set of safety regulations for estuary vessels issued by Belgian authorities in cooperation with Lloyd’s Register. These regulations introduce very innovative probabilistic ideas to ship stability regulations, and therefore present a significant step forward compared to the classical approach. Still, they do not account properly some important influences, such as wind gusts and motion nonlinearities, so considerably simplify the problem. The present investigation models the vessel motion much more realistically, analyzes the influence of beam wind and beam waves on the probability of a stability failure, and argues whether simplifications proposed by the regulations were justified. It is believed that presented method is not limited to the safety of estuary vessels only, but also gives important guidelines for a more general investigation of ship safety in wind and waves.


Author(s):  
Elliot M Lynch ◽  
Joshua B Lovell

Abstract The location of surface brightness maxima (e.g. apocentre and pericentre glow) in eccentric debris discs are often used to infer the underlying orbits of the dust and planetesimals that comprise the disc. However, there is a misconception that eccentric discs have higher surface densities at apocentre and thus necessarily exhibit apocentre glow at long wavelengths. This arises from the expectation that the slower velocities at apocentre lead to a “pile up” of dust, which fails to account for the greater area over which dust is spread at apocentre. Instead we show with theory and by modelling three different regimes that the morphology and surface brightness distributions of face-on debris discs are strongly dependent on their eccentricity profile (i.e. whether this is constant, rising or falling with distance). We demonstrate that at shorter wavelengths the classical pericentre glow effect remains true, whereas at longer wavelengths discs can either demonstrate apocentre glow or pericentre glow. We additionally show that at long wavelengths the same disc morphology can produce either apocentre glow or pericentre glow depending on the observational resolution. Finally, we show that the classical approach of interpreting eccentric debris discs using line densities is only valid under an extremely limited set of circumstances, which are unlikely to be met as debris disc observations become increasingly better resolved.


2021 ◽  
Vol 105 (0) ◽  
pp. 35-50
Author(s):  
D. Ferger

We show for a finite sequence of exchangeable random variables that the locations of the maximum and minimum are independent from every symmetric event. In particular they are uniformly distributed on the grid without the diagonal. Moreover, for an infinite sequence we show that the extrema and their locations are asymptotically independent. Here, in contrast to the classical approach we do not use affine-linear transformations. Moreover it is shown how the new transformations can be used in extreme value statistics.


2021 ◽  
pp. 23-44
Author(s):  
Chengpeng Hao ◽  
Danilo Orlando ◽  
Jun Liu ◽  
Chaoran Yin

Sign in / Sign up

Export Citation Format

Share Document