scholarly journals Higher moments of Banach space valued random variables

2015 ◽  
Vol 238 (1127) ◽  
pp. 0-0 ◽  
Author(s):  
Svante Janson ◽  
Sten Kaijser
2021 ◽  
Vol 127 (3) ◽  
Author(s):  
Svante Janson

We study the Banach space $D([0,1]^m)$ of functions of several variables that are (in a certain sense) right-continuous with left limits, and extend several results previously known for the standard case $m=1$. We give, for example, a description of the dual space, and we show that a bounded multilinear form always is measurable with respect to the $\sigma$-field generated by the point evaluations. These results are used to study random functions in the space. (I.e., random elements of the space.) In particular, we give results on existence of moments (in different senses) of such random functions, and we give an application to the Zolotarev distance between two such random functions.


1991 ◽  
Vol 14 (2) ◽  
pp. 381-384
Author(s):  
Rohan Hemasinha

LetEbe a Banach space, and let(Ω,ℱ,P)be a probability space. IfL1(Ω)contains an isomorphic copy ofL1[0,1]then inLEP(Ω)(1≤P<∞), the closed linear span of every sequence of independent,Evalued mean zero random variables has infinite codimension. IfEis reflexive orB-convex and1<P<∞then the closed(in LEP(Ω))linear span of any family of independent,Evalued, mean zero random variables is super-reflexive.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 727 ◽  
Author(s):  
Dongming Nie ◽  
Saima Rashid ◽  
Ahmet Ocak Akdemir ◽  
Dumitru Baleanu ◽  
Jia-Bao Liu

In this article, we aim to establish several inequalities for differentiable exponentially convex and exponentially quasi-convex mapping, which are connected with the famous Hermite–Hadamard (HH) integral inequality. Moreover, we have provided applications of our findings to error estimations in numerical analysis and higher moments of random variables.


2004 ◽  
Vol 2004 (9) ◽  
pp. 443-458
Author(s):  
Anna Kuczmaszewska

We study the equivalence between the weak and strong laws of large numbers for arrays of row-wise independent random elements with values in a Banach spaceℬ. The conditions under which this equivalence holds are of the Chung or Chung-Teicher types. These conditions are expressed in terms of convergence of specific series ando(1)requirements on specific weighted row-wise sums. Moreover, there are not any conditions assumed on the geometry of the underlying Banach space.


2007 ◽  
Vol 140 (3-4) ◽  
pp. 631-633 ◽  
Author(s):  
E. Mayer-Wolf ◽  
M. Zakai

Sign in / Sign up

Export Citation Format

Share Document