isomorphic copy
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 0)

Author(s):  
J. Villada Bedoya

AbstractIn the present note we prove the non set-stability of the AFPP under isometric renormings in the setting of Banach spaces containing a complemented isomorphic copy of $$c_0$$ c 0 or $$\ell _1$$ ℓ 1


Author(s):  
Frederik Garbe ◽  
Jan Hladký ◽  
Joonkyung Lee

AbstractFor a graph H, its homomorphism density in graphs naturally extends to the space of two-variable symmetric functions W in $$L^p$$ L p , $$p\ge e(H)$$ p ≥ e ( H ) , denoted by t(H, W). One may then define corresponding functionals $$\Vert W\Vert _{H}\,{:}{=}\,|t(H,W)|^{1/e(H)}$$ ‖ W ‖ H : = | t ( H , W ) | 1 / e ( H ) and $$\Vert W\Vert _{r(H)}\,{:}{=}\,t(H,|W|)^{1/e(H)}$$ ‖ W ‖ r ( H ) : = t ( H , | W | ) 1 / e ( H ) , and say that H is (semi-)norming if $$\Vert \,{\cdot }\,\Vert _{H}$$ ‖ · ‖ H is a (semi-)norm and that H is weakly norming if $$\Vert \,{\cdot }\,\Vert _{r(H)}$$ ‖ · ‖ r ( H ) is a norm. We obtain two results that contribute to the theory of (weakly) norming graphs. Firstly, answering a question of Hatami, who estimated the modulus of convexity and smoothness of $$\Vert \,{\cdot }\,\Vert _{H}$$ ‖ · ‖ H , we prove that $$\Vert \,{\cdot }\,\Vert _{r(H)}$$ ‖ · ‖ r ( H ) is neither uniformly convex nor uniformly smooth, provided that H is weakly norming. Secondly, we prove that every graph H without isolated vertices is (weakly) norming if and only if each component is an isomorphic copy of a (weakly) norming graph. This strong factorisation result allows us to assume connectivity of H when studying graph norms. In particular, we correct a negligence in the original statement of the aforementioned theorem by Hatami.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1817
Author(s):  
Jaturon Wattanapan ◽  
Watchareepan Atiponrat ◽  
Teerapong Suksumran

A gyrogroup, an algebraic structure that generalizes groups, is modeled on the bounded symmetric space of relativistically admissible velocities endowed with Einstein’s addition. Given a gyrogroup G, we offer a new way to construct a gyrogroup G• such that G• contains a gyro-isomorphic copy of G. We then prove that every strongly topological gyrogroup G can be embedded as a closed subgyrogroup of the path-connected and locally path-connected topological gyrogroup G•. We also study several properties shared by G and G•, including gyrocommutativity, first countability and metrizability. As an application of these results, we prove that being a quasitopological gyrogroup is equivalent to being a strongly topological gyrogroup in the class of normed gyrogroups.


2019 ◽  
Vol 27 (3) ◽  
pp. 223-228
Author(s):  
Christoph Schwarzweller

Summary This is the third part of a four-article series containing a Mizar [3], [1], [2] formalization of Kronecker’s construction about roots of polynomials in field extensions, i.e. that for every field F and every polynomial p ∈ F [X]\F there exists a field extension E of F such that p has a root over E. The formalization follows Kronecker’s classical proof using F [X]/<p> as the desired field extension E [6], [4], [5]. In the first part we show that an irreducible polynomial p ∈ F [X]\F has a root over F [X]/<p>. Note, however, that this statement cannot be true in a rigid formal sense: We do not have F ⊆ F [X]/ < p > as sets, so F is not a subfield of F [X]/<p>, and hence formally p is not even a polynomial over F [X]/ < p >. Consequently, we translate p along the canonical monomorphism ϕ: F → F [X]/<p> and show that the translated polynomial ϕ (p) has a root over F [X]/<p>. Because F is not a subfield of F [X]/<p> we construct in the second part the field (E \ ϕF)∪F for a given monomorphism ϕ: F → E and show that this field both is isomorphic to F and includes F as a subfield. In the literature this part of the proof usually consists of saying that “one can identify F with its image ϕF in F [X]/<p> and therefore consider F as a subfield of F [X]/<p>”. Interestingly, to do so we need to assume that F ∩ E = ∅, in particular Kronecker’s construction can be formalized for fields F with F ∩ F [X] = ∅. Surprisingly, as we show in this third part, this condition is not automatically true for arbitrary fields F : With the exception of ℤ2 we construct for every field F an isomorphic copy F′ of F with F′ ∩ F′ [X] ≠ ∅. We also prove that for Mizar’s representations of ℤn, ℚ and ℝ we have ℤn ∩ ℤn[X] = ∅, ℚ ∩ ℚ[X] = ∅ and ℝ ∩ ℝ[X] = ∅, respectively. In the fourth part we finally define field extensions: E is a field extension of F iff F is a subfield of E. Note, that in this case we have F ⊆ E as sets, and thus a polynomial p over F is also a polynomial over E. We then apply the construction of the second part to F [X]/<p> with the canonical monomorphism ϕ: F → F [X]/<p>. Together with the first part this gives – for fields F with F ∩ F [X] = ∅ – a field extension E of F in which p ∈ F [X]\F has a root.


2019 ◽  
Vol 27 (3) ◽  
pp. 229-235
Author(s):  
Christoph Schwarzweller

Summary This is the fourth part of a four-article series containing a Mizar [3], [2], [1] formalization of Kronecker’s construction about roots of polynomials in field extensions, i.e. that for every field F and every polynomial p ∈ F [X]\F there exists a field extension E of F such that p has a root over E. The formalization follows Kronecker’s classical proof using F [X]/<p> as the desired field extension E [6], [4], [5]. In the first part we show that an irreducible polynomial p ∈ F [X]\F has a root over F [X]/<p>. Note, however, that this statement cannot be true in a rigid formal sense: We do not have F ⊆ F [X]/ < p > as sets, so F is not a subfield of F [X]/<p>, and hence formally p is not even a polynomial over F [X]/ < p >. Consequently, we translate p along the canonical monomorphism ϕ: F → F [X]/<p> and show that the translated polynomial ϕ (p) has a root over F [X]/<p>. Because F is not a subfield of F [X]/<p> we construct in the second part the field (E \ ϕF)∪F for a given monomorphism ϕ: F → E and show that this field both is isomorphic to F and includes F as a subfield. In the literature this part of the proof usually consists of saying that “one can identify F with its image ϕF in F [X]/<p> and therefore consider F as a subfield of F [X]/<p>”. Interestingly, to do so we need to assume that F ∩ E = ∅, in particular Kronecker’s construction can be formalized for fields F with F ∩ F [X] = ∅. Surprisingly, as we show in the third part, this condition is not automatically true for arbitrary fields F : With the exception of ℤ2 we construct for every field F an isomorphic copy F′ of F with F′ ∩ F′ [X] ≠ ∅. We also prove that for Mizar’s representations of ℤn, ℚ and ℝ we have ℤn ∩ ℤn[X] = ∅, ℚ ∩ ℚ[X] = ∅ and ℝ ∩ ℝ[X] = ∅, respectively. In this fourth part we finally define field extensions: E is a field extension of F iff F is a subfield of E. Note, that in this case we have F ⊆ E as sets, and thus a polynomial p over F is also a polynomial over E. We then apply the construction of the second part to F [X]/<p> with the canonical monomorphism ϕ: F → F [X]/<p>. Together with the first part this gives – for fields F with F ∩ F [X] = ∅ – a field extension E of F in which p ∈ F [X]\F has a root.


2019 ◽  
Vol 27 (2) ◽  
pp. 133-137
Author(s):  
Christoph Schwarzweller

Summary This is the second part of a four-article series containing a Mizar [2], [1] formalization of Kronecker’s construction about roots of polynomials in field extensions, i.e. that for every field F and every polynomial p ∈ F [X]\F there exists a field extension E of F such that p has a root over E. The formalization follows Kronecker’s classical proof using F [X]/<p> as the desired field extension E [5], [3], [4]. In the first part we show that an irreducible polynomial p ∈ F [X]\F has a root over F [X]/<p>. Note, however, that this statement cannot be true in a rigid formal sense: We do not have F ⊆ [X]/ < p > as sets, so F is not a subfield of F [X]/<p>, and hence formally p is not even a polynomial over F [X]/ < p >. Consequently, we translate p along the canonical monomorphism ϕ : F → F [X]/<p> and show that the translated polynomial ϕ (p) has a root over F [X]/<p>. Because F is not a subfield of F [X]/<p> we construct in this second part the field (E \ ϕF )∪F for a given monomorphism ϕ : F → E and show that this field both is isomorphic to F and includes F as a subfield. In the literature this part of the proof usually consists of saying that “one can identify F with its image ϕF in F [X]/<p> and therefore consider F as a subfield of F [X]/<p>”. Interestingly, to do so we need to assume that F ∩ E = ∅, in particular Kronecker’s construction can be formalized for fields F with F ∩ F [X] = ∅. Surprisingly, as we show in the third part, this condition is not automatically true for arbitray fields F : With the exception of 𝕑2 we construct for every field F an isomorphic copy F′ of F with F′ ∩ F′ [X] ≠ ∅. We also prove that for Mizar’s representations of 𝕑n, 𝕈 and 𝕉 we have 𝕑n ∩ 𝕑n[X] = ∅, 𝕈 ∩ 𝕈 [X] = ∅ and 𝕉 ∩ 𝕉 [X] = ∅, respectively. In the fourth part we finally define field extensions: E is a field extension of F iff F is a subfield of E. Note, that in this case we have F ⊆ E as sets, and thus a polynomial p over F is also a polynomial over E. We then apply the construction of the second part to F [X]/<p> with the canonical monomorphism ϕ : F → F [X]/<p>. Together with the first part this gives - for fields F with F ∩ F [X] = ∅ - a field extension E of F in which p ∈ F [X]\F has a root.


2019 ◽  
Vol 27 (2) ◽  
pp. 93-100
Author(s):  
Christoph Schwarzweller

Summary This is the first part of a four-article series containing a Mizar [3], [1], [2] formalization of Kronecker’s construction about roots of polynomials in field extensions, i.e. that for every field F and every polynomial p ∈ F [X]\F there exists a field extension E of F such that p has a root over E. The formalization follows Kronecker’s classical proof using F [X]/<p> as the desired field extension E [9], [4], [6]. In this first part we show that an irreducible polynomial p ∈ F [X]\F has a root over F [X]/<p>. Note, however, that this statement cannot be true in a rigid formal sense: We do not have F ⊆ [X]/ < p > as sets, so F is not a subfield of F [X]/<p>, and hence formally p is not even a polynomial over F [X]/ < p >. Consequently, we translate p along the canonical monomorphism ϕ: F → F [X]/<p> and show that the translated polynomial ϕ(p) has a root over F [X]/<p>. Because F is not a subfield of F [X]/<p> we construct in the second part the field (E \ ϕF )∪F for a given monomorphism ϕ : F → E and show that this field both is isomorphic to F and includes F as a subfield. In the literature this part of the proof usually consists of saying that “one can identify F with its image ϕF in F [X]/<p> and therefore consider F as a subfield of F [X]/<p>”. Interestingly, to do so we need to assume that F ∩ E =∅, in particular Kronecker’s construction can be formalized for fields F with F \ F [X] =∅. Surprisingly, as we show in the third part, this condition is not automatically true for arbitray fields F : With the exception of 𝕑2 we construct for every field F an isomorphic copy F′ of F with F′ ∩ F′ [X] ≠∅. We also prove that for Mizar’s representations of 𝕑n, 𝕈 and 𝕉 we have 𝕑n ∩ 𝕑n[X] = ∅, 𝕈 ∩ 𝕈[X] = ∅and 𝕉 ∩ 𝕉[X] = ∅, respectively. In the fourth part we finally define field extensions: E is a field extension of F i F is a subfield of E. Note, that in this case we have F ⊆ E as sets, and thus a polynomial p over F is also a polynomial over E. We then apply the construction of the second part to F [X]/<p> with the canonical monomorphism ϕ : F → F [X]/<p>. Together with the first part this gives - for fields F with F ∩ F [X] = ∅ - a field extension E of F in which p ∈ F [X]\F has a root.


2016 ◽  
Vol 12 (03) ◽  
pp. 813-831 ◽  
Author(s):  
Luis Arenas-Carmona ◽  
Ignacio Saavedra

We explicitly compute the largest subtree, in the local Bruhat–Tits tree for [Formula: see text], whose vertices correspond to maximal orders containing a fixed order generated by a pair of orthogonal pure quaternions. In other words, we compute the set of maximal integral valued lattices in a ternary quadratic space, whose discriminant is a unit, containing a pair of orthogonal vectors, extending thus previous computations by Schulze-Pilot. The maximal order setting makes these computations simpler. The method presented here can be applied to arbitrary sub-orders or sublattices. The shape of this subtree is described, when it is finite, by a set of two invariants. In a previous work, the first author showed that determining the shape of these local subtrees allows the computation of representation fields, a class field determining the set of isomorphism classes, in a genus of Eichler orders, containing an isomorphic copy of a given order. Some further applications are described here.


2013 ◽  
Vol 5 (1) ◽  
pp. 59-62
Author(s):  
V.V. Kravtsiv ◽  
Z.G. Mozhyrovska ◽  
A.V. Zagorodnyuk

The paper contains proof of the hypercyclicity of “symmetric translation” on the algebras of block-symmetric analytic functions of bounded type on an isomorphic copy of $l_1$.


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Danyal Soybaş

A Banach space is said to have (D) property if every bounded linear operator is weakly compact for every Banach space whose dual does not contain an isomorphic copy of . Studying this property in connection with other geometric properties, we show that every Banach space whose dual has (V∗) property of Pełczyński (and hence every Banach space with (V) property) has (D) property. We show that the space of real functions, which are integrable with respect to a measure with values in a Banach space , has (D) property. We give some other results concerning Banach spaces with (D) property.


Sign in / Sign up

Export Citation Format

Share Document