Minimal Weak Truth Table Degrees and Computably Enumerable Turing Degrees

2020 ◽  
Vol 265 (1284) ◽  
pp. 0-0
Author(s):  
Rodney Downey ◽  
Keng Meng Ng ◽  
Reed Solomon
2002 ◽  
Vol 67 (4) ◽  
pp. 1579-1580
Author(s):  
Rodney G. Downey ◽  
Steffen Lempp

A computably enumerable Turing degree a is called contiguous iff it contains only a single computably enumerable weak truth table degree (Ladner and Sasso [2]). In [1], the authors proved that a nonzero computably enumerable degree a is contiguous iff it is locally distributive, that is, for all a1, a2, c with a1 ∪a2 = a and c ≤ a, there exist ci, ≤ ai with c1 ∪ c2 = c.To do this we supposed that W was a computably enumerable set and ∪ a computably set with a Turing functional Φ such that ΦW = U. Then we constructed computably enumerable sets A0, A1 and B together with functionals Γ0, Γ1, Γ, and Δ so thatand so as to satisfy all the requirements below.That is, we built a degree-theoretical splitting A0, A1 of W and a set B ≤TW such that if we cannot beat all possible degree-theoretical splittings V0, V1 of B then we were able to witness the fact that U ≤WW (via Λ).After the proof it was observed that the set U of the proof (page 1222, paragraph 4) needed only to be Δ20. It was then claimed that a consequence to the proof was that every contiguous computably enumerable degree was, in fact, strongly contiguous, in the sense that all (not necessarily computably enumerable) sets of the degree had the same weak truth table degree.


1986 ◽  
Vol 51 (1) ◽  
pp. 117-129 ◽  
Author(s):  
Paul Fischer

wtt-reducibility has become of some importance in the last years through the works of Ladner and Sasso [1975], Stob [1983] and Ambos-Spies [1984]. It differs from Turing reducibility by a recursive bound on the use of the reduction. This makes some proofs easier in the wtt degrees than in the Turing degrees. Certain proofs carry over directly from the Turing to the wtt degrees, especially those based on permitting. But the converse is also possible. There are some r.e. Turing degrees which consist of a single r.e. wtt degree (the so-called contiguous degrees; see Ladner and Sasso [1975]). Thus it suffices to prove a result about contiguous wtt degrees using an easier construction, and it carries over to the corresponding Turing degrees.In this work we prove some results on pairs of r.e. wtt degrees which have no infimum. The existence of such a pair has been shown by Ladner and Sasso. Here we use a different technique of Jockusch [1981] to prove this result (Theorem 1) together with some stronger ones. We show that a pair without infimum exists above a given incomplete wtt degree (Theorem 5) and below any promptly simple wtt degree (Theorem 12). In Theorem 17 we prove, however, that there are r.e. wtt degrees such that any pair below them has an infimum. This shows that certain initial segments of the wtt degrees are lattices. Thus there is a structural difference between the wtt and Turing degrees where the pairs without infimum are dense (Ambos-Spies [1984]).


1995 ◽  
Vol 60 (4) ◽  
pp. 1118-1136 ◽  
Author(s):  
Steffen Lempp ◽  
André Nies

AbstractWe show that the Π4-theory of the partial order of recursively enumerable weak truth-table degrees is undecidable, and give a new proof of the similar fact for r.e. T-degrees. This is accomplished by introducing a new coding scheme which consists in defining the class of finite bipartite graphs with parameters.


1992 ◽  
Vol 57 (3) ◽  
pp. 864-874 ◽  
Author(s):  
Klaus Ambos-Spies ◽  
André Nies ◽  
Richard A. Shore

AbstractWe show that the partial order of -sets under inclusion is elementarily definable with parameters in the semilattice of r.e. wtt-degrees. Using a result of E. Herrmann, we can deduce that this semilattice has an undecidable theory, thereby solving an open problem of P. Odifreddi.


2009 ◽  
Vol 74 (4) ◽  
pp. 1264-1272 ◽  
Author(s):  
David Diamondstone

AbstractA classical theorem in computability is that every promptly simple set can be cupped in the Turing degrees to some complete set by a low c.e. set. A related question due to A. Nies is whether every promptly simple set can be cupped by a superlow c.e. set, i.e. one whose Turing jump is truth-table reducible to the halting problem ∅′. A negative answer to this question is provided by giving an explicit construction of a promptly simple set that is not superlow cuppable. This problem relates to effective randomness and various lowness notions.


2003 ◽  
Vol 68 (3) ◽  
pp. 972-988 ◽  
Author(s):  
Yong Wang ◽  
Angsheng Li

AbstractWe say that a computably enumerable (c. e.) degree a is plus-cupping, if for every c.e. degree x with 0 < x ≤ a, there is a c. e. degree y ≠ 0′ such that x ∨ y = 0′. We say that a is n-plus-cupping, if for every c. e. degree x, if 0 < x ≤ a, then there is a lown c. e. degree I such that x ∨ I = 0′. Let PC and PCn be the set of all plus-cupping, and n-plus-cupping c. e. degrees respectively. Then PC1 ⊆ PC2 ⊆ PC3 = PC. In this paper we show that PC1 ⊂ PC2, so giving a nontrivial hierarchy for the plus cupping degrees. The theorem also extends the result of Li, Wu and Zhang [14] showing that LC1 ⊂ LC2, as well as extending the Harrington plus-cupping theorem [8].


Sign in / Sign up

Export Citation Format

Share Document