scholarly journals Asymptotic values of holomorphic functions of irregular growth

1965 ◽  
Vol 71 (5) ◽  
pp. 747-750
Author(s):  
Alfred Gray ◽  
S. M. Shah
1973 ◽  
Vol 25 (4) ◽  
pp. 812-819
Author(s):  
David C. Haddad

A function denned in a domain D is n-valent in D if f(z) — w0 has at most n zeros in D for each complex number w0. Let denote the class of nonconstant, holomorphic functions f in the unit disc that are n-valent in each component of the set . MacLane's class is the class of nonconstant, holomorphic functions in the unit disc that have asymptotic values at a dense subset of |z| = 1.


1969 ◽  
Vol 21 ◽  
pp. 1255-1262 ◽  
Author(s):  
K. F. Barth ◽  
W. J. Schneider

Let S be a spiral contained in D = {|z| < 1} such that S tends to C = {|z| = 1}. For the sake of brevity, by “f is bounded on S” we shall mean that f is holomorphic in D, unbounded, and bounded on S. The existence of such functions was first discussed by Valiron (9; 10); see also (1; 3; 8). Valiron also proved that any function that is “bounded on a spiral” must have the asymptotic value ∞ (10, p. 432). Functions that are bounded on a spiral may also have finite asymptotic values (1, p. 1254). In view of the above, Seidel has raised the question (oral communication): “Does there exist a function bounded on a spiral that has only the asymptotic value ∞?”. The following theorem answers this question affirmatively.


Author(s):  
A. F. Beardon

AbstractThe positive solutions of the equation $$x^y = y^x$$ x y = y x have been discussed for over two centuries. Goldbach found a parametric form for the solutions, and later a connection was made with the classical Lambert function, which was also studied by Euler. Despite the attention given to the real equation $$x^y=y^x$$ x y = y x , the complex equation $$z^w = w^z$$ z w = w z has virtually been ignored in the literature. In this expository paper, we suggest that the problem should not be simply to parametrise the solutions of the equation, but to uniformize it. Explicitly, we construct a pair z(t) and w(t) of functions of a complex variable t that are holomorphic functions of t lying in some region D of the complex plane that satisfy the equation $$z(t)^{w(t)} = w(t)^{z(t)}$$ z ( t ) w ( t ) = w ( t ) z ( t ) for t in D. Moreover, when t is positive these solutions agree with those of $$x^y=y^x$$ x y = y x .


2020 ◽  
Vol 70 (3) ◽  
pp. 605-616
Author(s):  
Stanisława Kanas ◽  
Vali Soltani Masih ◽  
Ali Ebadian

AbstractWe consider a family of analytic and normalized functions that are related to the domains ℍ(s), with a right branch of a hyperbolas H(s) as a boundary. The hyperbola H(s) is given by the relation $\begin{array}{} \frac{1}{\rho}=\left( 2\cos\frac{\varphi}{s}\right)^s\quad (0 \lt s\le 1,\, |\varphi| \lt (\pi s)/2). \end{array}$ We mainly study a coefficient problem of the families of functions for which zf′/f or 1 + zf″/f′ map the unit disk onto a subset of ℍ(s) . We find coefficients bounds, solve Fekete-Szegö problem and estimate the Hankel determinant.


2019 ◽  
Vol 52 (1) ◽  
pp. 482-489 ◽  
Author(s):  
Andriy Bandura ◽  
Oleh Skaskiv ◽  
Liana Smolovyk

AbstractIn the paper we investigate slice holomorphic functions F : ℂn → ℂ having bounded L-index in a direction, i.e. these functions are entire on every slice {z0 + tb : t ∈ℂ} for an arbitrary z0 ∈ℂn and for the fixed direction b ∈ℂn \ {0}, and (∃m0 ∈ ℤ+) (∀m ∈ ℤ+) (∀z ∈ ℂn) the following inequality holds{{\left| {\partial _{\bf{b}}^mF(z)} \right|} \over {m!{L^m}(z)}} \le \mathop {\max }\limits_{0 \le k \le {m_0}} {{\left| {\partial _{\bf{b}}^kF(z)} \right|} \over {k!{L^k}(z)}},where L : ℂn → ℝ+ is a positive continuous function, {\partial _{\bf{b}}}F(z) = {d \over {dt}}F\left( {z + t{\bf{b}}} \right){|_{t = 0}},\partial _{\bf{b}}^pF = {\partial _{\bf{b}}}\left( {\partial _{\bf{b}}^{p - 1}F} \right)for p ≥ 2. Also, we consider index boundedness in the direction of slice holomorphic solutions of some partial differential equations with partial derivatives in the same direction. There are established sufficient conditions providing the boundedness of L-index in the same direction for every slie holomorphic solutions of these equations.


Sign in / Sign up

Export Citation Format

Share Document