scholarly journals The Uniformisation of the Equation $$z^w=w^z$$

Author(s):  
A. F. Beardon

AbstractThe positive solutions of the equation $$x^y = y^x$$ x y = y x have been discussed for over two centuries. Goldbach found a parametric form for the solutions, and later a connection was made with the classical Lambert function, which was also studied by Euler. Despite the attention given to the real equation $$x^y=y^x$$ x y = y x , the complex equation $$z^w = w^z$$ z w = w z has virtually been ignored in the literature. In this expository paper, we suggest that the problem should not be simply to parametrise the solutions of the equation, but to uniformize it. Explicitly, we construct a pair z(t) and w(t) of functions of a complex variable t that are holomorphic functions of t lying in some region D of the complex plane that satisfy the equation $$z(t)^{w(t)} = w(t)^{z(t)}$$ z ( t ) w ( t ) = w ( t ) z ( t ) for t in D. Moreover, when t is positive these solutions agree with those of $$x^y=y^x$$ x y = y x .

Author(s):  
H. S. Hassan ◽  
N. G. Lloyd

SynopsisSuppose that f: ℝ×ℂN→ℂN is holomorphic in z and continuous in t, and that Φ: ℂN×ℂN→ℂN is holomorphic. Boundary value problems of the formare considered. The particular interest is in the structure and topological properties of the set of solutions. The paper is motivated by the corresponding properties of the set of periodic solutions of ż = f(t, z) when f is periodic in t. Consideration of this complex equation gives information about the periodic solutions of the real equation ẋ = f(t, x).


Author(s):  
Lucas José Muñoz Dentello ◽  
Denis Rafael Nacbar

The present work has been analysed graphically the approximations as Taylor series of functions of a complex variable, using the domain coloring. In this method each point is coloring according to the value of range. Functions of a complex variable have a property to associate one point of the plane other point of the plane, what describe them as vectorial functions from the complex plane to the complex plane. A complex function is called a holomorphic function in a region if is differentiable in all points of that region. Holomorphic functions can be described as power series.


2020 ◽  
Vol 17 (2) ◽  
pp. 256-277
Author(s):  
Ol'ga Veselovska ◽  
Veronika Dostoina

For the derivatives of Chebyshev second-kind polynomials of a complex vafiable, a system of functions biorthogonal with them on closed curves of the complex plane is constructed. Properties of these functions and the conditions of expansion of analytic functions in series in polynomials under consideration are established. The examples of such expansions are given. In addition, we obtain some combinatorial identities of independent interest.


1987 ◽  
Vol 35 (3) ◽  
pp. 471-479
Author(s):  
H. O. Kim ◽  
S. M. Kim ◽  
E. G. Kwon

For 0 < p < ∞ and 0 ≤a; ≤ 1, we define a space Hp, a of holomorphic functions on the unit disc of the complex plane, for which Hp, 0 = H∞, the space of all bounded holomorphic functions, and Hp, 1 = Hp, the usual Hardy space. We introduce a weak type operator whose boundedness extends the well-known Hardy-Littlewood embedding theorem to Hp, a, give some results on the Taylor coefficients of the functions of Hp, a and show by an example that the inner factor cannot be divisible in Hp, a.


2021 ◽  
Vol 2038 (1) ◽  
pp. 012009
Author(s):  
Joshua Feinberg ◽  
Roman Riser

Abstract We review our recent results on pseudo-hermitian random matrix theory which were hitherto presented in various conferences and talks. (Detailed accounts of our work will appear soon in separate publications.) Following an introduction of this new type of random matrices, we focus on two specific models of matrices which are pseudo-hermitian with respect to a given indefinite metric B. Eigenvalues of pseudo-hermitian matrices are either real, or come in complex-conjugate pairs. The diagrammatic method is applied to deriving explicit analytical expressions for the density of eigenvalues in the complex plane and on the real axis, in the large-N, planar limit. In one of the models we discuss, the metric B depends on a certain real parameter t. As t varies, the model exhibits various ‘phase transitions’ associated with eigenvalues flowing from the complex plane onto the real axis, causing disjoint eigenvalue support intervals to merge. Our analytical results agree well with presented numerical simulations.


2019 ◽  
Vol 79 (12) ◽  
Author(s):  
J. R. Pelaez ◽  
A. Rodas ◽  
J. Ruiz de Elvira

AbstractWe provide global parameterizations of $$\pi \pi \rightarrow \pi \pi $$ππ→ππ scattering S0 and P partial waves up to roughly 2 GeV for phenomenological use. These parameterizations describe the output and uncertainties of previous partial-wave dispersive analyses of $$\pi \pi \rightarrow \pi \pi $$ππ→ππ, both in the real axis up to 1.12 $${\mathrm {\,GeV}}$$GeV and in the complex plane within their applicability region, while also fulfilling forward dispersion relations up to 1.43 $${\mathrm {\,GeV}}$$GeV. Above that energy we just describe the available experimental data. Moreover, the analytic continuations of these global parameterizations also describe accurately the dispersive determinations of the $$\sigma /f_0(500)$$σ/f0(500), $$f_0(980)$$f0(980) and $$\rho (770)$$ρ(770) pole parameters.


2000 ◽  
Vol 159 ◽  
pp. 167-178 ◽  
Author(s):  
Hermann Render ◽  
Andreas Sauer

Let G be a domain in the complex plane containing zero and H(G) be the set of all holomorphic functions on G. In this paper the algebra M(H(G)) of all coefficient multipliers with respect to the Hadamard product is studied. Central for the investigation is the domain introduced by Arakelyan which is by definition the union of all sets with w ∈ Gc. The main result is the description of all isomorphisms between these multipliers algebras. As a consequence one obtains: If two multiplier algebras M(H(G1)) and M(H(G2)) are isomorphic then is equal to Two algebras H(G1) and H(G2) are isomorphic with respect to the Hadamard product if and only if G1 is equal to G2. Further the following uniqueness theorem is proved: If G1 is a domain containing 0 and if M(H(G)) is isomorphic to H(G1) then G1 is equal to .


Sign in / Sign up

Export Citation Format

Share Document