scholarly journals Vector measures and the strong operator topology

2009 ◽  
Vol 137 (07) ◽  
pp. 2345-2350
Author(s):  
Paul Lewis ◽  
Kimberly Muller ◽  
Andy Yingst
2010 ◽  
Vol 138 (09) ◽  
pp. 3391-3391
Author(s):  
Paul Lewis ◽  
Kimberly Muller ◽  
Andy Yingst

2002 ◽  
Vol 14 (06) ◽  
pp. 569-584 ◽  
Author(s):  
ALEXANDER ELGART ◽  
JEFFREY H. SCHENKER

We prove an adiabatic theorem for the evolution of spectral data under a weak additive perturbation in the context of a system without an intrinsic time scale. For continuous functions of the unperturbed Hamiltonian the convergence is in norm while for a larger class functions, including the spectral projections associated to embedded eigenvalues, the convergence is in the strong operator topology.


2011 ◽  
Vol 53 (3) ◽  
pp. 583-598 ◽  
Author(s):  
IOANA GHENCIU ◽  
PAUL LEWIS

AbstractIn this paper we study non-complemented spaces of operators and the embeddability of ℓ∞ in the spaces of operators L(X, Y), K(X, Y) and Kw*(X*, Y). Results of Bator and Lewis [2, 3] (Bull. Pol. Acad. Sci. Math.50(4) (2002), 413–416; Bull. Pol. Acad. Sci. Math.549(1) (2006), 63–73), Emmanuele [8–10] (J. Funct. Anal.99 (1991), 125–130; Math. Proc. Camb. Phil. Soc.111 (1992), 331–335; Atti. Sem. Mat. Fis. Univ. Modena42(1) (1994), 123–133), Feder [11] (Canad. Math. Bull.25 (1982), 78–81) and Kalton [16] (Math. Ann.208 (1974), 267–278), are generalised. A vector measure result is used to study the complementation of the spaces W(X, Y) and K(X, Y) in the space L(X, Y), as well as the complementation of K(X, Y) in W(X, Y). A fundamental result of Drewnowski [7] (Math. Proc. Camb. Phil. Soc. 108 (1990), 523–526) is used to establish a result for operator-valued measures, from which we obtain as corollaries the Vitali–Hahn–Saks–Nikodym theorem, the Nikodym Boundedness theorem and a Banach space version of the Phillips Lemma.


1989 ◽  
Vol 32 (4) ◽  
pp. 434-440 ◽  
Author(s):  
Chong-Man Cho

AbstractSuppose X and Y are closed subspaces of (ΣXn)p and (ΣYn)q (1 < p ≦ q < ∞, dim Xn < ∞, dimYn < ∞), respectively. If K(X, Y), the space of the compact linear operators from X to Y, is dense in L(X, Y), the space of the bounded linear operators from X to Y, in the strong operator topology, then K(X, Y) is an M-ideal in L(X, Y).


Author(s):  
D. J. Simms

1. Introduction. The group U(H) of unitary transformations of a complex Hilbert space H, endowed with its strong operator topology, is of interest in the study of unitary representations of a topological group. The unitary transformations of H induce a group U(Ĥ) of transformations of the associated projective space Ĥ. The projective unitary group U(Ĥ) with its strong operator topology is used in the study of projective (ray) representations. U(Ĥ) is, as a group, the quotient of U(H) by the subgroup S1 of scalar multiples of the identity. In this paper we prove that the strong operator toplogy of U(Ĥ) is in fact the quotient of the strong operator topology on U(H). This is related to the fact that U(H) is a principal bundle over U(Ĥ) with fibre S.


2008 ◽  
Vol 50 (1) ◽  
pp. 47-53
Author(s):  
SHMUEL KANTOROVITZ

AbstractA regular semigroup (cf. [4, p. 38]) is a C0-semigroup T(⋅) that has an extension as a holomorphic semigroup W(⋅) in the right halfplane $\Bbb C^+$, such that ||W(⋅)|| is bounded in the ‘unit rectangle’ Q:=(0, 1]× [−1, 1]. The important basic facts about a regular semigroup T(⋅) are: (i) it possesses a boundary groupU(⋅), defined as the limit lims → 0+W(s+i⋅) in the strong operator topology; (ii) U(⋅) is a C0-group, whose generator is iA, where A denotes the generator of T(⋅); and (iii) W(s+it)=T(s)U(t) for all s+it ∈$\Bbb C^+$ (cf. Theorems 17.9.1 and 17.9.2 in [3]). The following converse theorem is proved here. Let A be the generator of a C0-semigroup T(⋅). If iA generates a C0-group, U(⋅), then T(⋅) is a regular semigroup, and its holomorphic extension is given by (iii). This result is related to (but not included in) known results of Engel (cf. Theorem II.4.6 in [2]), Liu [7] and the author [6] for holomorphic extensions into arbitrary sectors, of C0-semigroups that are bounded in every proper subsector. The method of proof is also different from the method used in these references. Criteria for generators of regular semigroups follow as easy corollaries.


Sign in / Sign up

Export Citation Format

Share Document