holomorphic extension
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 12)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
pp. 2150035
Author(s):  
Philipp Schmitt ◽  
Matthias Schötz

We study formal and non-formal deformation quantizations of a family of manifolds that can be obtained by phase space reduction from [Formula: see text] with the Wick star product in arbitrary signature. Two special cases of such manifolds are the complex projective space [Formula: see text] and the complex hyperbolic disc [Formula: see text]. We generalize several older results to this setting: The construction of formal star products and their explicit description by bidifferential operators, the existence of a convergent subalgebra of “polynomial” functions, and its completion to an algebra of certain analytic functions that allow an easy characterization via their holomorphic extensions. Moreover, we find an isomorphism between the non-formal deformation quantizations for different signatures, linking, e.g., the star products on [Formula: see text] and [Formula: see text]. More precisely, we describe an isomorphism between the (polynomial or analytic) function algebras that is compatible with Poisson brackets and the convergent star products. This isomorphism is essentially given by Wick rotation, i.e. holomorphic extension of analytic functions and restriction to a new domain. It is not compatible with the [Formula: see text]-involution of pointwise complex conjugation.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1009
Author(s):  
Enrico De Micheli

In this paper, we consider the inverse scattering problem and, in particular, the problem of reconstructing the spectral density associated with the Yukawian potentials from the sequence of the partial-waves fℓ of the Fourier–Legendre expansion of the scattering amplitude. We prove that if the partial-waves fℓ satisfy a suitable Hausdorff-type condition, then they can be uniquely interpolated by a function f˜(λ)∈C, analytic in a half-plane. Assuming also the Martin condition to hold, we can prove that the Fourier–Legendre expansion of the scattering amplitude converges uniformly to a function f(θ)∈C (θ being the complexified scattering angle), which is analytic in a strip contained in the θ-plane. This result is obtained mainly through geometrical methods by replacing the analysis on the complex cosθ-plane with the analysis on a suitable complex hyperboloid. The double analytic symmetry of the scattering amplitude is therefore made manifest by its analyticity properties in the λ- and θ-planes. The function f(θ) is shown to have a holomorphic extension to a cut-domain, and from the discontinuity across the cuts we can iteratively reconstruct the spectral density σ(μ) associated with the class of Yukawian potentials. A reconstruction algorithm which makes use of Pollaczeck and Laguerre polynomials is finally given.


Author(s):  
J. A. A. Opschoor ◽  
Ch. Schwab ◽  
J. Zech

AbstractFor a parameter dimension $$d\in {\mathbb {N}}$$ d ∈ N , we consider the approximation of many-parametric maps $$u: [-\,1,1]^d\rightarrow {\mathbb R}$$ u : [ - 1 , 1 ] d → R by deep ReLU neural networks. The input dimension d may possibly be large, and we assume quantitative control of the domain of holomorphy of u: i.e., u admits a holomorphic extension to a Bernstein polyellipse $${{\mathcal {E}}}_{\rho _1}\times \cdots \times {{\mathcal {E}}}_{\rho _d} \subset {\mathbb {C}}^d$$ E ρ 1 × ⋯ × E ρ d ⊂ C d of semiaxis sums $$\rho _i>1$$ ρ i > 1 containing $$[-\,1,1]^{d}$$ [ - 1 , 1 ] d . We establish the exponential rate $$O(\exp (-\,bN^{1/(d+1)}))$$ O ( exp ( - b N 1 / ( d + 1 ) ) ) of expressive power in terms of the total NN size N and of the input dimension d of the ReLU NN in $$W^{1,\infty }([-\,1,1]^d)$$ W 1 , ∞ ( [ - 1 , 1 ] d ) . The constant $$b>0$$ b > 0 depends on $$(\rho _j)_{j=1}^d$$ ( ρ j ) j = 1 d which characterizes the coordinate-wise sizes of the Bernstein-ellipses for u. We also prove exponential convergence in stronger norms for the approximation by DNNs with more regular, so-called “rectified power unit” activations. Finally, we extend DNN expression rate bounds also to two classes of non-holomorphic functions, in particular to d-variate, Gevrey-regular functions, and, by composition, to certain multivariate probability distribution functions with Lipschitz marginals.


Author(s):  
A.M. Kytmanov ◽  
S.G. Myslivets

The problem of holomorphic extension of functions defined on the boundary of a domain into this domain is actual in multidimensional complex analysis. It has a long history, starting with the proceedings of Poincaré and Hartogs. This paper considers continuous functions defined on the boundary of a bounded domain $ D $ in $ \mathbb C ^ n $, $ n> 1 $, with piecewise-smooth boundary, and having the generalized boundary Morera property along the family of complex lines that intersect the boundary of a domain. Morera property is that the integral of a given function is equal to zero over the intersection of the boundary of the domain with the complex line. It is shown that such functions extend holomorphically to the domain $ D $. For functions of one complex variable, the Morera property obviously does not imply a holomorphic extension. Therefore, this problem should be considered only in the multidimensional case $ (n> 1) $. The main method for studying such functions is the method of multidimensional integral representations, in particular, the Bochner-Martinelli integral representation.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Magnus Aspenberg ◽  
Viviane Baladi ◽  
Juho Leppänen ◽  
Tomas Persson

<p style='text-indent:20px;'>We associate to a perturbation <inline-formula><tex-math id="M1">\begin{document}$ (f_t) $\end{document}</tex-math></inline-formula> of a (stably mixing) piecewise expanding unimodal map <inline-formula><tex-math id="M2">\begin{document}$ f_0 $\end{document}</tex-math></inline-formula> a two-variable fractional susceptibility function <inline-formula><tex-math id="M3">\begin{document}$ \Psi_\phi(\eta, z) $\end{document}</tex-math></inline-formula>, depending also on a bounded observable <inline-formula><tex-math id="M4">\begin{document}$ \phi $\end{document}</tex-math></inline-formula>. For fixed <inline-formula><tex-math id="M5">\begin{document}$ \eta \in (0,1) $\end{document}</tex-math></inline-formula>, we show that the function <inline-formula><tex-math id="M6">\begin{document}$ \Psi_\phi(\eta, z) $\end{document}</tex-math></inline-formula> is holomorphic in a disc <inline-formula><tex-math id="M7">\begin{document}$ D_\eta\subset \mathbb{C} $\end{document}</tex-math></inline-formula> centered at zero of radius <inline-formula><tex-math id="M8">\begin{document}$ &gt;1 $\end{document}</tex-math></inline-formula>, and that <inline-formula><tex-math id="M9">\begin{document}$ \Psi_\phi(\eta, 1) $\end{document}</tex-math></inline-formula> is the Marchaud fractional derivative of order <inline-formula><tex-math id="M10">\begin{document}$ \eta $\end{document}</tex-math></inline-formula> of the function <inline-formula><tex-math id="M11">\begin{document}$ t\mapsto \mathcal{R}_\phi(t): = \int \phi(x)\, d\mu_t $\end{document}</tex-math></inline-formula>, at <inline-formula><tex-math id="M12">\begin{document}$ t = 0 $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M13">\begin{document}$ \mu_t $\end{document}</tex-math></inline-formula> is the unique absolutely continuous invariant probability measure of <inline-formula><tex-math id="M14">\begin{document}$ f_t $\end{document}</tex-math></inline-formula>. In addition, we show that <inline-formula><tex-math id="M15">\begin{document}$ \Psi_\phi(\eta, z) $\end{document}</tex-math></inline-formula> admits a holomorphic extension to the domain <inline-formula><tex-math id="M16">\begin{document}$ \{\, (\eta, z) \in \mathbb{C}^2\mid 0&lt;\Re \eta &lt;1, \, z \in D_\eta \,\} $\end{document}</tex-math></inline-formula>. Finally, if the perturbation <inline-formula><tex-math id="M17">\begin{document}$ (f_t) $\end{document}</tex-math></inline-formula> is horizontal, we prove that <inline-formula><tex-math id="M18">\begin{document}$ \lim_{\eta \in (0,1), \eta \to 1}\Psi_\phi(\eta, 1) = \partial_t \mathcal{R}_\phi(t)|_{t = 0} $\end{document}</tex-math></inline-formula>.</p>


2020 ◽  
Vol 269 (3) ◽  
pp. 2697-2704 ◽  
Author(s):  
Takafumi Amaba ◽  
Roland Friedrich ◽  
Takuya Murayama

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 287 ◽  
Author(s):  
Enrico De Micheli

We prove that, if the coefficients of a Fourier–Legendre expansion satisfy a suitable Hausdorff-type condition, then the series converges to a function which admits a holomorphic extension to a cut-plane. Next, we introduce a Laplace-type transform (the so-called Spherical Laplace Transform) of the jump function across the cut. The main result of this paper is to establish the connection between the Spherical Laplace Transform and the Non-Euclidean Fourier Transform in the sense of Helgason. In this way, we find a connection between the unitary representation of SO ( 3 ) and the principal series of the unitary representation of SU ( 1 , 1 ) .


Author(s):  
Simona G. Myslivets

In this paper we consider different families of complex lines, sufficient for holomorphic extension the functions f, defined on the boundary of a domain D Cn, n > 1, into this domain, and possessing the one-dimensional holomorphic extension property along this complex lines


2019 ◽  
Vol 293 (3-4) ◽  
pp. 1277-1285
Author(s):  
Luca Baracco ◽  
Martino Fassina

Sign in / Sign up

Export Citation Format

Share Document