principal bundle
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 29)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Eric J. Pap ◽  
◽  
Daniël Boer ◽  
Holger Waalkens ◽  
◽  
...  

We present a formal geometric framework for the study of adiabatic quantum mechanics for arbitrary finite-dimensional non-degenerate Hamiltonians. This framework generalizes earlier holonomy interpretations of the geometric phase to non-cyclic states appearing for non-Hermitian Hamiltonians. We start with an investigation of the space of non-degenerate operators on a finite-dimensional state space. We then show how the energy bands of a Hamiltonian family form a covering space. Likewise, we show that the eigenrays form a bundle, a generalization of a principal bundle, which admits a natural connection yielding the (generalized) geometric phase. This bundle provides in addition a natural generalization of the quantum geometric tensor and derived tensors, and we show how it can incorporate the non-geometric dynamical phase as well. We finish by demonstrating how the bundle can be recast as a principal bundle, so that both the geometric phases and the permutations of eigenstates can be expressed simultaneously by means of standard holonomy theory.


Author(s):  
Yannick Herfray ◽  
Carlos Scarinci

Abstract General Relativity in dimension $n = p + q$ can be formulated as a gauge theory for the conformal group $\SO\left(p+1,q+1\right)$, along with an additional field reducing the structure group down to the Poincaré group $\ISO\left(p,q\right)$. In this paper, we propose a new variational principle for Einstein geometry which realizes this fact. Importantly, as opposed to previous treatments in the literature, our action functional gives first order field equations and does not require supplementary constraints on gauge fields, such as torsion-freeness. Our approach is based on the ``first order formulation'' of conformal tractor geometry. Accordingly, it provides a straightforward variational derivation of the tractor version of the Einstein equation. To achieve this, we review the standard theory of tractor geometry with a gauge theory perspective, defining the tractor bundle a priori in terms of an abstract principal bundle and providing an identification with the standard conformal tractor bundle via a dynamical soldering form. This can also be seen as a generalization of the so called Cartan-Palatini formulation of General Relativity in which the ``internal'' orthogonal group $\SO\left(p,q\right)$ is extended to an appropriate parabolic subgroup $P\subset\SO\left(p+1,q+1\right)$ of the conformal group.


2021 ◽  
Vol 111 (6) ◽  
Author(s):  
Xiao Han ◽  
Giovanni Landi

AbstractWe study the Ehresmann–Schauenburg bialgebroid of a noncommutative principal bundle as a quantization of the gauge groupoid of a classical principal bundle. We show that the gauge group of the noncommutative bundle is isomorphic to the group of bisections of the bialgebroid, and we give a crossed module structure for the bisections and the automorphisms of the bialgebroid. Examples include: Galois objects of Taft algebras, a monopole bundle over a quantum sphere and a not faithfully flat Hopf–Galois extension of commutative algebras. For each of the latter two examples, there is in fact a suitable invertible antipode for the bialgebroid making it a Hopf algebroid.


Author(s):  
Anatol Odzijewicz ◽  
Maciej Horowski

AbstractWe discuss various aspects of the positive kernel method of quantization of the one-parameter groups $$\tau _t \in \text{ Aut }(P,\vartheta )$$ τ t ∈ Aut ( P , ϑ ) of automorphisms of a G-principal bundle $$P(G,\pi ,M)$$ P ( G , π , M ) with a fixed connection form $$\vartheta $$ ϑ on its total space P. We show that the generator $${\hat{F}}$$ F ^ of the unitary flow $$U_t = e^{it {\hat{F}}}$$ U t = e i t F ^ being the quantization of $$\tau _t $$ τ t is realized by a generalized Kirillov–Kostant–Souriau operator whose domain consists of sections of some vector bundle over M, which are defined by a suitable positive kernel. This method of quantization applied to the case when $$G=\hbox {GL}(N,{\mathbb {C}})$$ G = GL ( N , C ) and M is a non-compact Riemann surface leads to quantization of the arbitrary holomorphic flow $$\tau _t^{\mathrm{hol}} \in \text{ Aut }(P,\vartheta )$$ τ t hol ∈ Aut ( P , ϑ ) . For the above case, we present the integral decompositions of the positive kernels on $$P\times P$$ P × P invariant with respect to the flows $$\tau _t^{\mathrm{hol}}$$ τ t hol in terms of the spectral measure of $${\hat{F}}$$ F ^ . These decompositions generalize the ones given by Bochner’s Theorem for the positive kernels on $${\mathbb {C}} \times {\mathbb {C}}$$ C × C invariant with respect to the one-parameter groups of translations of complex plane.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1669
Author(s):  
Marie Billaud-Friess ◽  
Antonio Falcó ◽  
Anthony Nouy

In this paper, we introduce a new geometric description of the manifolds of matrices of fixed rank. The starting point is a geometric description of the Grassmann manifold Gr(Rk) of linear subspaces of dimension r<k in Rk, which avoids the use of equivalence classes. The set Gr(Rk) is equipped with an atlas, which provides it with the structure of an analytic manifold modeled on R(k−r)×r. Then, we define an atlas for the set Mr(Rk×r) of full rank matrices and prove that the resulting manifold is an analytic principal bundle with base Gr(Rk) and typical fibre GLr, the general linear group of invertible matrices in Rk×k. Finally, we define an atlas for the set Mr(Rn×m) of non-full rank matrices and prove that the resulting manifold is an analytic principal bundle with base Gr(Rn)×Gr(Rm) and typical fibre GLr. The atlas of Mr(Rn×m) is indexed on the manifold itself, which allows a natural definition of a neighbourhood for a given matrix, this neighbourhood being proved to possess the structure of a Lie group. Moreover, the set Mr(Rn×m) equipped with the topology induced by the atlas is proven to be an embedded submanifold of the matrix space Rn×m equipped with the subspace topology. The proposed geometric description then results in a description of the matrix space Rn×m, seen as the union of manifolds Mr(Rn×m), as an analytic manifold equipped with a topology for which the matrix rank is a continuous map.


2021 ◽  
Author(s):  
Zhao-Hui Man

Abstract There are two ways to unify gravitational field and gauge field. One is to represent gravitational field as principal bundle connection, and the other is to represent gauge field as affine connection. Poincaré gauge theory and metric affine gauge theory adopt the first approach. This paper adopts the second.An affine connection is used to establish a unified coordinate description of gauge field and gravitational field. This theory has the following advantages.(i) Gauge field and gravitational field can both be represented by affine connection; they can be described by a unified spatial frame.(ii) Time can be regarded as the total metric with respect to all dimensions of internal coordinate space and external coordinate space. On-shell can be regarded as gradient direction. Quantum theory can be regarded as a geometric theory of distribution of gradient directions. Hence, gravitational theory and quantum theory obtain the same view of time and space and a unified description of evolution in affine connection representation of gauge fields.(iii) Chiral asymmetry, coupling constants, MNS mixing and CKM mixing can appear spontaneously as geometric properties in affine connection representation, whereas in U(1) x SU(2) x SU(3) principal bundle connection representation they can just only be artificially set up. Some postulates of the Standard Model can be turned into theorems in affine connection representation, so they are not necessary to be regarded as postulates anymore.(iv) The unification theory of gauge fields that are represented by affine connection can avoid the problem that a proton decays into a lepton.(v) Since the concept of point particle is thoroughly abandoned, this theory is not required to be renormalized.(iv) There exists a possible geometric interpretation to the color confinement of quarks.The Standard Model is not possessed of the above advantages. In the affine connection representation, we can get better interpretations of these physical properties. This is probably a necessary step towards the ultimate theory ofphysics.


2021 ◽  
Vol 27_NS1 (1) ◽  
pp. 16-20
Author(s):  
Lovejoy S. Das ◽  
Mohammad Nazrul Islam Khan

The purpose of this paper is to study the principal fibre bundle ( P , M , G , π p ) with Lie group G , where M admits Lorentzian almost paracontact structure ( Ø , ξ p , η p , g ) satisfying certain condtions on (1, 1) tensor field J , indeed possesses an almost product structure on the principal fibre bundle. In the later sections, we have defined trilinear frame bundle and have proved that the trilinear frame bundle is the principal bundle and have proved in Theorem 5.1 that the Jacobian map π * is the isomorphism.


2021 ◽  
Author(s):  
Zhao-Hui Man

Abstract There are two ways to unify gravitational field and gauge field. One is to represent gravitational field as principal bundle connection, and the other is to represent gauge field as affine connection. Poincare gauge theory and metric-affine gauge theory adopt the first approach. This paper adopts the second. We show a generalization of Riemannian geometry and a new affine connection, and apply them to establishing a unified coordinate description of gauge field and gravitational field. It has the following advantages. (i) Gauge field and gravitational field have the same affine connection representation, and can be described by a unified spatial frame. (ii) Time can be regarded as the total metric with respect to all dimensions of internal coordinate space and external coordinate space. On-shell can be regarded as gradient direction. Quantum theory can be regarded as a geometric theory of distribution of gradient directions. Hence, gravitational theory and quantum theory obtain the same view of time and space and a unified description of evolution in affine connection representation of gauge fields. (iii) Chiral asymmetry, coupling constants, MNS mixing and CKM mixing can appear spontaneously in affine connection representation, while in $U(1) \times SU(2)\times SU(3)$ principal bundle connection representation they can just only be artificially set up. Some principles and postulates of the conventional theories that are based on principal bundle connection representation can be turned into theorems in affine connection representation, so they are not necessary to be regarded as principles or postulates anymore.


Author(s):  
Shahn Majid ◽  
◽  
Liam Williams ◽  

We semiclassicalise the theory of quantum group principal bundles to the level of Poisson geometry. The total space X is a Poisson manifold with Poisson-compatible contravariant connection, the fibre is a Poisson-Lie group in the sense of Drinfeld with bicovariant Poisson-compatible contravariant connection, and the base has an inherited Poisson structure and Poisson-compatible contravariant connection. The latter are known to be the semiclassical data for a quantum differential calculus. The theory is illustrated by the Poisson level of the q-Hopf fibration on the standard q-sphere. We also construct the Poisson level of the spin connection on a principal bundle.


Sign in / Sign up

Export Citation Format

Share Document