Topological aspects of the projective unitary group

Author(s):  
D. J. Simms

1. Introduction. The group U(H) of unitary transformations of a complex Hilbert space H, endowed with its strong operator topology, is of interest in the study of unitary representations of a topological group. The unitary transformations of H induce a group U(Ĥ) of transformations of the associated projective space Ĥ. The projective unitary group U(Ĥ) with its strong operator topology is used in the study of projective (ray) representations. U(Ĥ) is, as a group, the quotient of U(H) by the subgroup S1 of scalar multiples of the identity. In this paper we prove that the strong operator toplogy of U(Ĥ) is in fact the quotient of the strong operator topology on U(H). This is related to the fact that U(H) is a principal bundle over U(Ĥ) with fibre S.

2005 ◽  
Vol 48 (3) ◽  
pp. 340-354 ◽  
Author(s):  
Esteban Andruchow

AbstractLet ℳ be a type II1 von Neumann algebra, τ a trace in ℳ, and L2 (ℳ, τ) the GNS Hilbert space of τ . We regard the unitary group Uℳ as a subset of L2(ℳ, τ) and characterize the shortest smooth curves joining two fixed unitaries in the L2 metric. As a consequence of this we obtain that Uℳ, though a complete (metric) topological group, is not an embedded riemannian submanifold of L2(ℳ, τ)


1998 ◽  
Vol 41 (4) ◽  
pp. 463-472 ◽  
Author(s):  
Alan Moran

AbstractWe show that for certain compact right topological groups, , the strong operator topology closure of the image of the right regular representation of G in L(H), where H = L2(G), is a compact topological group and introduce a class of representations, R , which effectively transfers the representation theory of over to G. Amongst the groups for which this holds is the class of equicontinuous groups which have been studied by Ruppert in [10].We use familiar examples to illustrate these features of the theory and to provide a counter-example. Finally we remark that every equicontinuous group which is at the same time a Borel group is in fact a topological group.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1060
Author(s):  
Enrico Celeghini ◽  
Manuel Gadella ◽  
Mariano A. del del Olmo

We introduce a multi-parameter family of bases in the Hilbert space L2(R) that are associated to a set of Hermite functions, which also serve as a basis for L2(R). The Hermite functions are eigenfunctions of the Fourier transform, a property that is, in some sense, shared by these “generalized Hermite functions”. The construction of these new bases is grounded on some symmetry properties of the real line under translations, dilations and reflexions as well as certain properties of the Fourier transform. We show how these generalized Hermite functions are transformed under the unitary representations of a series of groups, including the Weyl–Heisenberg group and some of their extensions.


2003 ◽  
Vol 45 (1) ◽  
pp. 17-25 ◽  
Author(s):  
M. W. Wong ◽  
Zhaohui Zhang

AbstractThe resolution of the identity formula for a localisation operator with two admissible wavelets on a separable and complex Hilbert space is given and the traces of these operators are computed.


2017 ◽  
Vol 11 (01) ◽  
pp. 1850004
Author(s):  
S. S. Dragomir

By the use of the celebrated Kato’s inequality, we obtain in this paper some new inequalities for trace class operators on a complex Hilbert space [Formula: see text] Natural applications for functions defined by power series of normal operators are given as well.


2018 ◽  
Vol 68 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Fangfang Zhao ◽  
Changjing Li

AbstractLetB(H) be the algebra of all bounded linear operators on a complex Hilbert spaceHand 𝓐 ⊆B(H) be a von Neumann algebra with no central summands of typeI1. ForA,B∈ 𝓐, define byA∙B=AB+BA∗a new product ofAandB. In this article, it is proved that a map Φ: 𝓐 →B(H) satisfies Φ(A∙B∙C) = Φ(A) ∙B∙C+A∙ Φ(B) ∙C+A∙B∙Φ(C) for allA,B,C∈ 𝓐 if and only if Φ is an additive *-derivation.


Sign in / Sign up

Export Citation Format

Share Document