scholarly journals Mazur’s theorem on sequentially continuous linear functionals

1963 ◽  
Vol 14 (4) ◽  
pp. 644-644
Author(s):  
J. R. Isbell ◽  
E. S. Thomas
1992 ◽  
Vol 34 (2) ◽  
pp. 175-188
Author(s):  
Neill Robertson

By the term “locally convex space”, we mean a locally convex Hausdorff topological vector space (see [17]). We shall denote the algebraic dual of a locally convex space E by E*, and its topological dual by E′. It is convenient to think of the elements of E as being linear functionals on E′, so that E can be identified with a subspace of E′*. The adjoint of a continuous linear map T:E→F will be denoted by T′:F′→E′. If 〈E, F〈 is a dual pair of vector spaces, then we shall denote the corresponding weak, strong and Mackey topologies on E by α(E, F), β(E, F) and μ(E, F) respectively.


2002 ◽  
Vol 165 ◽  
pp. 91-116 ◽  
Author(s):  
Murali Rao ◽  
Zoran Vondraćek

We introduce a framework for a nonlinear potential theory without a kernel on a reflexive, strictly convex and smooth Banach space of functions. Nonlinear potentials are defined as images of nonnegative continuous linear functionals on that space under the duality mapping. We study potentials and reduced functions by using a variant of the Gauss-Frostman quadratic functional. The framework allows a development of other main concepts of nonlinear potential theory such as capacities, equilibrium potentials and measures of finite energy.


1974 ◽  
Vol 17 (2) ◽  
pp. 233-242 ◽  
Author(s):  
M. S. Macphail ◽  
A. Wilansky

The purpose of this paper is to continue the study of certain “distinguished” subsets of the convergence domain of a matrix, as developed by A. Wilansky [6] and G. Bennett [1], We also consider continuous linear functionals on the domain, and the extent to which their representation is unique; this turns out to be connected with the behaviour of the subsets.


1970 ◽  
Vol 13 (4) ◽  
pp. 431-439 ◽  
Author(s):  
James A. Dyer

The purpose of this paper is to consider a representation for the elements of a linear topological space in the form of a σ-integral over a linearly ordered subset of V; this ordered subset is what will be called an L basis. The formal definition of an L basis is essentially an abstraction from ideas used, often tacitly, in proofs of many of the theorems concerning integral representations for continuous linear functionals on function spaces.The L basis constructed in this paper differs in several basic ways from the integral basis considered by Edwards in [5]. Since the integrals used here are of Hellinger type rather than Radon type one has in the approximating sums for the integral an immediate and natural analogue to the partial sum operators of summation basis theory.


Author(s):  
I. J. Maddox

If (X, g) is a paranormed space, with paranorm g (see (2)), then we denote by X* the continuous dual of X, i.e. the set of all continuous linear functionals on X. If E is a set of complex sequences x = (xk) then E† will denote the generalized Köthe–Toeplitz dual of E


1996 ◽  
Vol 8 (1) ◽  
pp. 164-177 ◽  
Author(s):  
H. N. Mhaskar

We prove that neural networks with a single hidden layer are capable of providing an optimal order of approximation for functions assumed to possess a given number of derivatives, if the activation function evaluated by each principal element satisfies certain technical conditions. Under these conditions, it is also possible to construct networks that provide a geometric order of approximation for analytic target functions. The permissible activation functions include the squashing function (1 − e−x)−1 as well as a variety of radial basis functions. Our proofs are constructive. The weights and thresholds of our networks are chosen independently of the target function; we give explicit formulas for the coefficients as simple, continuous, linear functionals of the target function.


1999 ◽  
Vol 4 (4) ◽  
pp. 209-229
Author(s):  
Walter Roth

We consider Borel measures on a locally compact Hausdorff space whose values are linear functionals on a locally convex cone. We define integrals for cone-valued functions and verify that continuous linear functionals on certain spaces of continuous cone-valued functions endowed with an inductive limit topology may be represented by such integrals.


Sign in / Sign up

Export Citation Format

Share Document