scholarly journals Some rings of differential operators which are Morita equivalent to the Weyl algebra $A\sb 1$

1986 ◽  
Vol 98 (1) ◽  
pp. 29-29
Author(s):  
Ian M. Musson
2005 ◽  
Vol 04 (05) ◽  
pp. 577-586 ◽  
Author(s):  
V. V. BAVULA

In [6], J. Dixmier posed six problems for the Weyl algebra A1 over a field K of characteristic zero. Problems 3, 5,and 6 were solved respectively by Joseph and Stein [7]; the author [1]; and Joseph [7]. Problems 1, 2, and 4 are still open. For an arbitrary algebra A, Dixmier's problem 6 is essentially aquestion: whether an inner derivation of the algebra A of the type ad f(a), a ∈ A, f(t) ∈ K[t], deg t(f(t)) > 1, has a nonzero eigenvalue. We prove that the answer is negative for many classes of algebras (e.g., rings of differential operators [Formula: see text] on smooth irreducible algebraic varieties, all prime factor algebras of the universal enveloping algebra [Formula: see text] of a completely solvable algebraic Lie algebra [Formula: see text]). This gives an affirmative answer (with a short proof) to an analogue of Dixmier's Problem 6 for certain algebras of small Gelfand–Kirillov dimension, e.g. the ring of differential operators [Formula: see text] on a smooth irreducible affine curve X, Usl(2), etc. (see [3] for details). In this paper an affirmative answer is given to an analogue of Dixmier's Problem 3 but for the ring [Formula: see text].


2010 ◽  
Vol 147 (3) ◽  
pp. 965-1002 ◽  
Author(s):  
Yuri Berest ◽  
Oleg Chalykh

AbstractWe introduce quasi-invariant polynomials for an arbitrary finite complex reflection group W. Unlike in the Coxeter case, the space of quasi-invariants of a given multiplicity is not, in general, an algebra but a module Qk over the coordinate ring of a (singular) affine variety Xk. We extend the main results of Berest et al. [Cherednik algebras and differential operators on quasi-invariants, Duke Math. J. 118 (2003), 279–337] to this setting: in particular, we show that the variety Xk and the module Qk are Cohen–Macaulay, and the rings of differential operators on Xk and Qk are simple rings, Morita equivalent to the Weyl algebra An(ℂ) , where n=dim Xk. Our approach relies on representation theory of complex Cherednik algebras introduced by Dunkl and Opdam [Dunkl operators for complex reflection groups, Proc. London Math. Soc. (3) 86 (2003), 70–108] and is parallel to that of Berest et al. As an application, we prove the existence of shift operators for an arbitrary complex reflection group, confirming a conjecture of Dunkl and Opdam. Another result is a proof of a conjecture of Opdam, concerning certain operations (KZ twists) on the set of irreducible representations of W.


2015 ◽  
Vol 58 (3) ◽  
pp. 543-580
Author(s):  
V. V. Bavula

AbstractThe algebra of one-sided inverses of a polynomial algebra Pn in n variables is obtained from Pn by adding commuting left (but not two-sided) inverses of the canonical generators of the algebra Pn. The algebra is isomorphic to the algebra of scalar integro-differential operators provided that char(K) = 0. Ignoring the non-Noetherian property, the algebra belongs to a family of algebras like the nth Weyl algebra An and the polynomial algebra P2n. Explicit generators are found for the group Gn of automorphisms of the algebra and for the group of units of (both groups are huge). An analogue of the Jacobian homomorphism AutK-alg (Pn) → K* is introduced for the group Gn (notice that the algebra is non-commutative and neither left nor right Noetherian). The polynomial Jacobian homomorphism is unique. Its analogue is also unique for n > 2 but for n = 1, 2 there are exactly two of them. The proof is based on the following theorem that is proved in the paper:


Sign in / Sign up

Export Citation Format

Share Document