complex reflection groups
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 32)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Maksim M. Vaskouski

Asymptotic properties of random walks on minimal Cayley graphs of complex reflection groups are investigated. The main result of the paper is theorem on fast mixing for random walks on Cayley graphs of complex reflection groups. Particularly, bounds of diameters and isoperimetric constants, a known result on fast fixing property for expander graphs play a crucial role to obtain the main result. A constructive way to prove a special case of Babai’s conjecture on logarithmic order of diameters for complex reflection groups is proposed. Basing on estimates of diameters and Cheeger inequality, there is obtained a non-trivial lower bound for spectral gaps of minimal Cayley graphs on complex reflection groups.


2021 ◽  
Vol 13 (2) ◽  
pp. 452-459
Author(s):  
H. Randriamaro

In 1994, M. Bożejko and R. Speicher proved the existence of completely positive quasimultiplicative maps from the group algebra of Coxeter groups to the set of bounded operators. They used some of them to define an inner product associated to creation and annihilation operators on a direct sum of Hilbert space tensor powers called full Fock space. Afterwards, A. Mathas and R. Orellana defined in 2008 a length function on imprimitive complex reflection groups that allowed them to introduce an analogue to the descent algebra of Coxeter groups. In this article, we use the length function defined by A. Mathas and R. Orellana to extend the result of M. Bożejko and R. Speicher to imprimitive complex reflection groups, in other words to prove the existence of completely positive quasimultiplicative maps from the group algebra of imprimitive complex reflection groups to the set of bounded operators. Some of those maps are then used to define a more general inner product associated to creation and annihilation operators on the full Fock space. Recall that in quantum mechanics, the state of a physical system is represented by a vector in a Hilbert space, and the creation and annihilation operators act on a Fock state by respectively adding and removing a particle in the ascribed quantum state.


Author(s):  
Ragnar-Olaf Buchweitz ◽  
Eleonore Faber ◽  
Colin Ingalls ◽  
Matthew Lewis

AbstractWe are interested in the McKay quiver Γ(G) and skew group rings A ∗G, where G is a finite subgroup of GL(V ), where V is a finite dimensional vector space over a field K, and A is a K −G-algebra. These skew group rings appear in Auslander’s version of the McKay correspondence. In the first part of this paper we consider complex reflection groups $\mathsf {G} \subseteq \text {GL}(V)$ G ⊆ GL ( V ) and find a combinatorial method, making use of Young diagrams, to construct the McKay quivers for the groups G(r,p,n). We first look at the case G(1,1,n), which is isomorphic to the symmetric group Sn, followed by G(r,1,n) for r > 1. Then, using Clifford theory, we can determine the McKay quiver for any G(r,p,n) and thus for all finite irreducible complex reflection groups up to finitely many exceptions. In the second part of the paper we consider a more conceptual approach to McKay quivers of arbitrary finite groups: we define the Lusztig algebra $\widetilde {A}(\mathsf {G})$ A ~ ( G ) of a finite group $\mathsf {G} \subseteq \text {GL}(V)$ G ⊆ GL ( V ) , which is Morita equivalent to the skew group ring A ∗G. This description gives us an embedding of the basic algebra Morita equivalent to A ∗ G into a matrix algebra over A.


Author(s):  
Carlos E. Arreche ◽  
Nathan F. Williams

Abstract We study normal reflection subgroups of complex reflection groups. Our approach leads to a refinement of a theorem of Orlik and Solomon to the effect that the generating function for fixed-space dimension over a reflection group is a product of linear factors involving generalised exponents. Our refinement gives a uniform proof and generalisation of a recent theorem of the second author.


2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Sam Armon ◽  
Tom Halverson

We derive a formula for the entries in the change-of-basis matrix between Young's seminormal and natural representations of the symmetric group. These entries are determined as sums over weighted paths in the weak Bruhat graph on standard tableaux, and we show that they can be computed recursively as the weighted sum of at most two previously-computed entries in the matrix. We generalize our results to work for affine Hecke algebras, Ariki-Koike algebras, Iwahori-Hecke algebras, and complex reflection groups given by the wreath product of a  finite cyclic group with the symmetric group. 


2021 ◽  
Vol Volume 5 ◽  
Author(s):  
Cédric Bonnafé ◽  
Alessandra Sarti

We construct here many families of K3 surfaces that one can obtain as quotients of algebraic surfaces by some subgroups of the rank four complex reflection groups. We find in total 15 families with at worst $ADE$--singularities. In particular we classify all the K3 surfaces that can be obtained as quotients by the derived subgroup of the previous complex reflection groups. We prove our results by using the geometry of the weighted projective spaces where these surfaces are embedded and the theory of Springer and Lehrer-Springer on properties of complex reflection groups. This construction generalizes a previous construction by W. Barth and the second author. Comment: 26 pages


Author(s):  
Jingyin Huang ◽  
Damian Osajda

AbstractA graph is Helly if every family of pairwise intersecting combinatorial balls has a nonempty intersection. We show that weak Garside groups of finite type and FC-type Artin groups are Helly, that is, they act geometrically on Helly graphs. In particular, such groups act geometrically on spaces with a convex geodesic bicombing, equipping them with a nonpositive-curvature-like structure. That structure has many properties of a CAT(0) structure and, additionally, it has a combinatorial flavor implying biautomaticity. As immediate consequences we obtain new results for FC-type Artin groups (in particular braid groups and spherical Artin groups) and weak Garside groups, including e.g. fundamental groups of the complements of complexified finite simplicial arrangements of hyperplanes, braid groups of well-generated complex reflection groups, and one-relator groups with non-trivial center. Among the results are: biautomaticity, existence of EZ and Tits boundaries, the Farrell–Jones conjecture, the coarse Baum–Connes conjecture, and a description of higher order homological and homotopical Dehn functions. As a means of proving the Helly property we introduce and use the notion of a (generalized) cell Helly complex.


Author(s):  
Mitsuo Kato ◽  
◽  
Toshiyuki Mano ◽  
Jiro Sekiguchi ◽  
◽  
...  

Flat structure was introduced by K. Saito and his collaborators at the end of 1970's. Independently the WDVV equation arose from the 2D topological field theory. B. Dubrovin unified these two notions as Frobenius manifold structure. In this paper, we study isomonodromic deformations of an Okubo system, which is a special kind of systems of linear differential equations. We show that the space of independent variables of such isomonodromic deformations can be equipped with a Saito structure (without a metric), which was introduced by C. Sabbah as a generalization of Frobenius manifold. As its consequence, we introduce flat basic invariants of well-generated finite complex reflection groups and give explicit descriptions of Saito structures (without metrics) obtained from algebraic solutions to the sixth Painlevé equation.


Sign in / Sign up

Export Citation Format

Share Document