scholarly journals Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion

1963 ◽  
Vol 106 (3) ◽  
pp. 436-436 ◽  
Author(s):  
Daniel Ray
Author(s):  
S. J. Taylor

It has long been known (see Lévy (3), pp. 256, 260) that the sample paths of Brownian motion in the plane form an everywhere dense set of zero Lebesgue measure, with probability 1. In (7), a capacity argument was used to show that the Hausdorff measure with respect to tα is infinite for 0 < α < 2 with probability 1 so that the dimension of the path set is known to be 2. If one considers the initial part of the sample path Cω = C(1, ω) for 0 ≤ t ≤ 1, then it becomes interesting to ask if there is a measure function ψ(t) such that, with probability 1,for suitable positive constants c1, c2. The corresponding problem for paths in k-space (k ≥ 3) has been solved. In this case, if φ1(t) = t2 log log t−1, Lévy (4) obtained the upper bound and Ciesielski and Taylor (1) obtained the lower bound. For the planar case, the path is recurrent, and the intricate fine structure makes the measure function φ1(t) inappropriate. In (2), Erdő and Taylor showed that the measure is finite with probability 1 with respect to φ2(t) = t2 log t−1, and at that time we thought that (1) might be true with ψ(t) = φ2(t). Recently Ray (5) has obtained the lower bound in (1)withThe purpose of the present note is to obtain the upper bound in (1) for the same measure function, thus showing that (2) defines the correct measure function for measuring planar Brownian motion.


2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Satya N. Majumdar ◽  
Francesco Mori ◽  
Hendrik Schawe ◽  
Grégory Schehr

2001 ◽  
Vol 186 (2) ◽  
pp. 239-270 ◽  
Author(s):  
Amir Dembo ◽  
Yuval Peres ◽  
Jay Rosen ◽  
Ofer Zeitouni

1996 ◽  
Vol 16 (2) ◽  
pp. 379-404 ◽  
Author(s):  
Thierry De La Rue

AbstractWe construct two real Gaussian dynamical systems of zero entropy; the first one is not loosely Bernoulli, and the second is a loosely Bernoulli Gaussian-Kronecker system. To get loose-Bernoullicity for the second system, we prove and use a property of planar Brownian motion on [0, 1]: we can recover the whole trajectory knowing only some angles formed by the motion.


1992 ◽  
Vol 29 (02) ◽  
pp. 291-304 ◽  
Author(s):  
J. Durbin ◽  
D. Williams

An expression for the first-passage density of Brownian motion to a curved boundary is expanded as a series of multiple integrals. Bounds are given for the error due to truncation of the series when the boundary is wholly concave or wholly convex. Extensions to the Brownian bridge and to continuous Gauss–Markov processes are given. The series provides a practical method for calculating the probability that a sample path crosses the boundary in a specified time-interval to a high degree of accuracy. A numerical example is given.


Sign in / Sign up

Export Citation Format

Share Document