outer boundary
Recently Published Documents


TOTAL DOCUMENTS

532
(FIVE YEARS 119)

H-INDEX

32
(FIVE YEARS 5)

2022 ◽  
Vol 11 (1) ◽  
pp. 56
Author(s):  
Xiaorong Gao ◽  
Haowen Yan ◽  
Xiaomin Lu ◽  
Pengbo Li

The major reason that the fully automated generalization of residential areas has not been achieved to date is that it is difficult to acquire the knowledge that is required for automated generalization and for the calculation of spatial similarity degrees between map objects at different scales. Furthermore, little attention has been given to generalization methods with a scale reduction that is larger than two-fold. To fill this gap, this article develops a hybrid approach that combines two existing methods to generalize residential areas that range from 1:10,000 to 1:50,000. The two existing methods are Boffet’s method for free space acquisition and kernel density analysis for city hotspot detection. Using both methods, the proposed approach follows a knowledge-based framework by implementing map analysis and spatial similarity measurements in a multiscale map space. First, the knowledge required for residential area generalization is obtained by analyzing multiscale residential areas and their corresponding contributions. Second, residential area generalization is divided into two subprocesses: free space acquisition and urban area outer boundary determination. Then, important parameters for the two subprocesses are obtained through map analysis and similarity measurements, reflecting the knowledge that is hidden in the cartographer’s mind. Using this acquired knowledge, complete generalization steps are formed. The proposed approach is tested using multiscale datasets from Lanzhou City. The experimental results demonstrate that our method is better than the traditional methods in terms of location precision and actuality. The approach is robust, comparatively insensitive to the noise of the small buildings beyond urban areas, and easy to implement in GIS software.


2022 ◽  
Vol 8 (3) ◽  
pp. 23-29
Author(s):  
Majid Aram

A nonlinear model has been introduced for the positive column of DC glow discharge in apure sealed, or low flow, gas media by including the diffusion, recombination, attachment, detachment,process and having the two-step ionization process of the metastable excited states, too. By thecombination of the system of the nonlinear continuity equations of the system, using some physicalestimations, and degrading the resulted nonlinear PDE in polar and rectangular systems of coordinatethe steady-state nonlinear ODE have been derived. Using a series-based solution, an innovativenonlinear recursion relation has been proposed for calculating the sentence of series. Using the stateof elimination of free charge on the outer boundary of the discharge vessel, the universal equation ofthe characteristic energy of the electrons versus the similarity variable, using the maximum degree ofionization as the parameter, has been derived.


Author(s):  
Yves Capdeboscq ◽  
Michael Vogelius

Abstract. A central ingredient of cloaking-by-mapping is the diffeomorphisn which transforms an annulus with a small hole into an annulus with a finite size hole, while being the identity on the outer boundary of the annulus. The resulting meta-material is anisotropic, which makes it difficult to manufacture. The problem of minimizing anisotropy among radial transformations has been studied in [4]. In this work, as in [4], we formulate the problem of minimizing anisotropy as an energy minimization problem. Our main goal is to provide strong evidence for the conjecture that for cloaks with circular boundaries, non-radial transformations do not lead to lower degree of anisotropy. In the final section, we consider cloaks with non-circular boundaries and show that in this case, non-radial cloaks may be advantageous, when it comes to minimizing anisotropy.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8445
Author(s):  
Xiarong Jiao ◽  
Shan Jiang ◽  
Hong Liu

At present, there are two main methods for solving oil and gas seepage equations: analytical and numerical methods. In most cases, it is difficult to find the analytical solution, and the numerical solution process is complex with limited accuracy. Based on the mass conservation equation and the steady-state sequential substitution method, the moving boundary nonlinear equations of radial flow under different outer boundary conditions are derived. The quasi-Newton method is used to solve the nonlinear equations. The solutions of the nonlinear equations with an infinite outer boundary, constant pressure outer boundary and closed outer boundary are compared with the analytical solutions. The calculation results show that it is reliable to solve the oil-gas seepage equation with the moving boundary nonlinear equation. To deal with the difficulty in solving analytical solutions for low-permeability reservoirs and numerical solutions of moving boundaries, a quasi-linear model and a nonlinear moving boundary model were proposed based on the characteristics of low-permeability reservoirs. The production decline curve chart of the quasi-linear model and the recovery factor calculation chart were drawn, and the sweep radius calculation formula was also established. The research results can provide a theoretical reference for the policy-making of development technology in low-permeability reservoirs.


Author(s):  
Donald W. Wright ◽  
Jacek A. Koziel ◽  
David B. Parker ◽  
Anna Iwasinska ◽  
Thomas G. Hartman ◽  
...  

Solving environmental odor issues can be confounded by many analytical, technological, and socioeconomic factors. Considerable know-how and technologies can fail to properly identify odorants responsible for the downwind nuisance odor and, thereby, focus on odor mitigation strategies. We propose enabling solutions to environmental odor issues utilizing troubleshooting techniques developed for the food, beverage, and consumer products industries. Our research has shown that the odorant impact-priority ranking process can be definable and relatively simple. The initial challenge is the prioritization of environmental odor character from the perspective of the impacted citizenry downwind. In this research, we utilize a natural model from the animal world to illustrate the rolling unmasking effect (RUE) and discuss it more systematically in the context of the proposed environmental odorant prioritization process. Regardless of the size and reach of an odor source, a simplification of odor character and composition typically develops with increasing dilution downwind. An extreme odor simplification-upon-dilution was demonstrated for the prehensile-tailed porcupine (P.T. porcupine); its downwind odor frontal boundary was dominated by a pair of extremely potent character-defining odorants: (1) ‘onion’/‘body odor’ and (2) ‘onion’/‘grilled’ odorants. In contrast with the outer-boundary simplicity, the near-source assessment presented considerable compositional complexity and composite odor character difference. The ultimate significance of the proposed RUE approach is the illustration of naturally occurring phenomena that explain why some environmental odors and their sources can be challenging to identify and mitigate using an analytical-only approach (focused on compound identities and concentrations). These approaches rarely move beyond comprehensive lists of volatile compounds emitted by the source. The novelty proposed herein lies in identification of those few compounds responsible for the downwind odor impacts and requiring mitigation focus.


2021 ◽  
Vol 13 (24) ◽  
pp. 5014
Author(s):  
Dmitry Frey ◽  
Alexander Osadchiev

Satellite altimetry is an efficient instrument for detection dynamical processes in the World Ocean, including reconstruction of geostrophic currents and tracking of mesoscale eddies. Satellite altimetry has the potential to detect large river plumes, which have reduced salinity and, therefore, elevated surface level as compared to surrounding saline sea. In this study, we analyze applicability of satellite altimetry for detection of the Ob–Yenisei plume in the Kara Sea, which is among the largest river plumes in the World Ocean. Based on the extensive in situ data collected at the study area during oceanographic surveys in 2007–2019, we analyze the accuracy and efficiency of satellite altimetry in reproducing, first, the outer boundary of the plume and, second, the internal structure of the plume. We reveal that the value of positive level anomaly within the Ob–Yenisei plume strongly depends on the vertical plume structure and is prone to significant synoptic and seasonal variability due to wind forcing and mixing of the plume with subjacent sea. As a result, despite generally high statistical correlation between the ADT and surface salinity, straightforward usage of ADT for detection of the river plume is incorrect and produces misleading results. Satellite altimetry could provide correct information about spatial extents and shape of the Ob–Yenisei plume only if it is validated by synchronous in situ measurements.


2021 ◽  
Vol 923 (2) ◽  
pp. 166
Author(s):  
Zhi Li ◽  
Yan Li

Abstract To explore overshoot mixing beyond the convective core in core helium-burning stars, we use the k−ω model, which is incorporated into the Modules of Experiments in Stellar Astrophysics to investigate overshoot mixing in the evolution of subdwarf B (sdB) stars. Our results show that the development of the convective core can be divided into three stages. The mass of the convective core increases monotonically when the radiative temperature gradient, ∇rad, monotonically decreases outwardly, and overshoot mixing presents an exponential decay similar to Herwig. The splitting of the convective core occurs repeatedly when the minimum value of ∇rad near the convective boundary is smaller than the adiabatic temperature gradient, ∇ad. The mass at the outer boundary of the convective shell M sc can exceed 0.2 M ⊙ after the central helium abundance drops to about Y c ≈ 0.45. It is close to the convective core masses derived by asteroseismology for younger models (0.22 to ∼0.28 M ⊙). In the final stage, “core breathing pulses” occurred two or three times. Helium was injected into the convective core by overshoot mixing and increased the lifetime of sdB stars. The mass of the mixed region M mixed can rise to 0.303 M ⊙ by the end. The oxygen content in the central core of our g-mode sdB models is about 80% by mass. The high amounts of oxygen deduced from asteroseismology may be evidence supporting the existence of core breathing pulses.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3015
Author(s):  
Gregory A. Chechkin

In this paper, we consider an elliptic problem in a domain perforated along the boundary. By setting a homogeneous Dirichlet condition on the boundary of the cavities and a homogeneous Neumann condition on the outer boundary of the domain, we prove higher integrability of the gradient of the solution to the problem.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A875-A875
Author(s):  
Daniel Winkowski ◽  
Jeni Caldara ◽  
Brit Boehmer ◽  
Regan Baird

BackgroundMultiplex images are becoming pivotal in tissue pathology because they provide positional location and multidimensional phenotype of every cell. The heterogeneity of cells, morphologies, and densities makes the identification of the millions of cells in a tissue slice challenging. There is an urgent need for a robust, yet flexible, algorithm to automatically demarcate each cell that accurately defines cellular boundaries. We have developed a method to extend a DL nuclear identification algorithm beyond the nucleus and to the outer boundary of the cell using biological signals from multiplex panels.MethodsAll image analysis was performed in the Visiopharm image analysis platform. Three human observers provided ground truth (GT) annotations by outlining cells in predefined areas each containing ~30 cells in six different images from two different multiplex instruments: mIF = 8-plex via Vectra Polaris from Akoya and IMC = 13-plex via Hyperion from Fluidigm. Images were subsequently segmented by different AI methods: Machine Learning Nuclear Detection (ML), Deep Learning Nuclear Detection (DL), and DL that incorporates biological signals (DL+). Each set of computer-generated annotations was compared to GT using common evaluation metrics DICE, Precision and Sensitivity.ResultsOverall, we found a high degree of concordance between the computer-generated and human annotations (DICE = 0.73±0.08, n=12) and between imaging modalities (mIF: 0.76±0.07; IMC: 0.71±0.08; n=6). Comparison of DICE scores for the AI methods indicated a superior delineation of cell boundaries using the DL+ method (DL+: 0.79±0.07; ML: 0.74±0.08; DL: 0.74±0.03;). Precision, which compares true vs false positive annotated regions to GT, was also high for all images (0.77±0.11) (mIF: 0.76±0.10; IMC: 0.78±0.11). Sensitivity, which compares true positives vs false negative annotated regions GT, was also high for all images (0.77±0.09) (mIF: 0.76±0.09; IMC: 0.79±0.09).ConclusionsWe developed a flexible DL based strategy that enables the most comprehensive segmentation of cells in multiplex tissue images. Each AI approach shows a high concordance with segmentation annotations from human observers as measured by the industry standards DICE, Precision and Sensitivity. The DL+ method did achieve the highest DICE score indicating a more accurate delineation of cell boundaries. Expectedly, precision and sensitivity metrics are similar between all methods while DICE Coefficient better accounts for the annotations at the cell edge. The DL+ cell segmentation algorithm will yield an improved accuracy when phenotyping cells in downstream analysis as the precise biomarker composition is more accurately contained within each cell.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M. O. Archer ◽  
M. D. Hartinger ◽  
F. Plaschke ◽  
D. J. Southwood ◽  
L. Rastaetter

AbstractSurface waves process the turbulent disturbances which drive dynamics in many space, astrophysical and laboratory plasma systems, with the outer boundary of Earth’s magnetosphere, the magnetopause, providing an accessible environment to study them. Like waves on water, magnetopause surface waves are thought to travel in the direction of the driving solar wind, hence a paradigm in global magnetospheric dynamics of tailward propagation has been well-established. Here we show through multi-spacecraft observations, global simulations, and analytic theory that the lowest-frequency impulsively-excited magnetopause surface waves, with standing structure along the terrestrial magnetic field, propagate against the flow outside the boundary. Across a wide local time range (09–15h) the waves’ Poynting flux exactly balances the flow’s advective effect, leading to no net energy flux and thus stationary structure across the field also. Further down the equatorial flanks, however, advection dominates hence the waves travel downtail, seeding fluctuations at the resonant frequency which subsequently grow in amplitude via the Kelvin-Helmholtz instability and couple to magnetospheric body waves. This global response, contrary to the accepted paradigm, has implications on radiation belt, ionospheric, and auroral dynamics and potential applications to other dynamical systems.


Sign in / Sign up

Export Citation Format

Share Document