The exact Hausdorff measure of the sample path for planar Brownian motion

Author(s):  
S. J. Taylor

It has long been known (see Lévy (3), pp. 256, 260) that the sample paths of Brownian motion in the plane form an everywhere dense set of zero Lebesgue measure, with probability 1. In (7), a capacity argument was used to show that the Hausdorff measure with respect to tα is infinite for 0 < α < 2 with probability 1 so that the dimension of the path set is known to be 2. If one considers the initial part of the sample path Cω = C(1, ω) for 0 ≤ t ≤ 1, then it becomes interesting to ask if there is a measure function ψ(t) such that, with probability 1,for suitable positive constants c1, c2. The corresponding problem for paths in k-space (k ≥ 3) has been solved. In this case, if φ1(t) = t2 log log t−1, Lévy (4) obtained the upper bound and Ciesielski and Taylor (1) obtained the lower bound. For the planar case, the path is recurrent, and the intricate fine structure makes the measure function φ1(t) inappropriate. In (2), Erdő and Taylor showed that the measure is finite with probability 1 with respect to φ2(t) = t2 log t−1, and at that time we thought that (1) might be true with ψ(t) = φ2(t). Recently Ray (5) has obtained the lower bound in (1)withThe purpose of the present note is to obtain the upper bound in (1) for the same measure function, thus showing that (2) defines the correct measure function for measuring planar Brownian motion.

Author(s):  
E. S. Barnes

Letbe n linear forms with real coefficients and determinant Δ = ∥ aij∥ ≠ 0; and denote by M(X) the lower bound of | X1X2 … Xn| over all integer sets (u) ≠ (0). It is well known that γn, the upper bound of M(X)/|Δ| over all sets of forms Xi, is finite, and the value of γn has been determined when n = 2 and n = 3.


2013 ◽  
Vol 23 (6) ◽  
pp. 1257-1265 ◽  
Author(s):  
GEORGE DAVIE ◽  
WILLEM L. FOUCHÉ

We examine a construction due to Fouché in which a Brownian motion is constructed from an algorithmically random infinite binary sequence. We show that although the construction is provably not computable in the sense of computable analysis, a lower bound for the rate of convergence is computable in any upper bound for the compressibilty of the sequence, making the construction layerwise computable.


1970 ◽  
Vol 22 (3) ◽  
pp. 569-581 ◽  
Author(s):  
S. K. Thomason

In this paper we shall prove that every finite lattice is isomorphic to a sublattice of the degrees of unsolvability, and that every one of a certain class of finite lattices is isomorphic to an initial segment of degrees.Acknowledgment. I am grateful to Ralph McKenzie for his assistance in matters of lattice theory.1. Representation of lattices. The equivalence lattice of the set S consists of all equivalence relations on S, ordered by setting θ ≦ θ’ if for all a and b in S, a θ b ⇒ a θ’ b. The least upper bound and greatest lower bound in are given by the ⋃ and ⋂ operations:


Author(s):  
P. A. P. Moran

Consider bounded sets of points in a Euclidean space Rq of q dimensions. Let h(t) be a continuous increasing function, positive for t>0, and such that h(0) = 0. Then the Hausdroff measure h–mE of a set E in Rq, relative to the function h(t), is defined as follows. Let ε be a small positive number and suppose E is covered by a finite or enumerably infinite sequence of convex sets {Ui} (open or closed) of diameters di less than or equal to ε. Write h–mεE = greatest lower bound for any such sequence {Ui}. Then h–mεE is non-decreasing as ε tends to zero. We define


2015 ◽  
Vol 47 (04) ◽  
pp. 1108-1131 ◽  
Author(s):  
Claudia Klüppelberg ◽  
Muneya Matsui

Fractional Lévy processes generalize fractional Brownian motion in a natural way. We go a step further and extend the usual fractional Riemann-Liouville kernel to a regularly varying function. We call the resulting stochastic processes generalized fractional Lévy processes (GFLPs) and show that they may have short or long memory increments and that their sample paths may have jumps or not. Moreover, we define stochastic integrals with respect to a GFLP and investigate their second-order structure and sample path properties. A specific example is the Ornstein-Uhlenbeck process driven by a time-scaled GFLP. We prove a functional central limit theorem for such scaled processes with a fractional Ornstein-Uhlenbeck process as a limit process. This approximation applies to a wide class of stochastic volatility models, which include models where possibly neither the data nor the latent volatility process are semimartingales.


1995 ◽  
Vol 15 (6) ◽  
pp. 1005-1030 ◽  
Author(s):  
Michel Benaïm ◽  
Morris W. Hirsch

AbstractWe consider stochastic processes {xn}n≥0 of the formwhere F: ℝm → ℝm is C2, {λi}i≥1 is a sequence of positive numbers decreasing to 0 and {Ui}i≥1 is a sequence of uniformly bounded ℝm-valued random variables forming suitable martingale differences. We show that when the vector field F is Morse-Smale, almost surely every sample path approaches an asymptotically stable periodic orbit of the deterministic dynamical system dy/dt = F(y). In the case of certain generalized urn processes we show that for each such orbit Γ, the probability of sample paths approaching Γ is positive. This gives the generic behavior of three-color urn models.


2015 ◽  
Vol 158 (3) ◽  
pp. 419-437 ◽  
Author(s):  
BAO-WEI WANG ◽  
JUN WU ◽  
JIAN XU

AbstractWe generalise the mass transference principle established by Beresnevich and Velani to limsup sets generated by rectangles. More precisely, let {xn}n⩾1 be a sequence of points in the unit cube [0, 1]d with d ⩾ 1 and {rn}n⩾1 a sequence of positive numbers tending to zero. Under the assumption of full Lebesgue measure theoretical statement of the set \begin{equation*}\big\{x\in [0,1]^d: x\in B(x_n,r_n), \ {{\rm for}\, {\rm infinitely}\, {\rm many}}\ n\in \mathbb{N}\big\},\end{equation*} we determine the lower bound of the Hausdorff dimension and Hausdorff measure of the set \begin{equation*}\big\{x\in [0,1]^d: x\in B^{a}(x_n,r_n), \ {{\rm for}\, {\rm infinitely}\, {\rm many}}\ n\in \mathbb{N}\big\},\end{equation*} where a = (a1, . . ., ad) with 1 ⩽ a1 ⩽ a2 ⩽ . . . ⩽ ad and Ba(x, r) denotes a rectangle with center x and side-length (ra1, ra2,. . .,rad). When a1 = a2 = . . . = ad, the result is included in the setting considered by Beresnevich and Velani.


Fractals ◽  
2009 ◽  
Vol 17 (02) ◽  
pp. 137-148
Author(s):  
PÉTER MÓRA

It is well-known that the Hausdorff dimension of the Sierpinski triangle Λ is s = log 3/ log 2. However, it is a long standing open problem to compute the s-dimensional Hausdorff measure of Λ denoted by [Formula: see text]. In the literature the best existing estimate is [Formula: see text] In this paper we improve significantly the lower bound. We also give an upper bound which is weaker than the one above but everybody can check it easily. Namely, we prove that [Formula: see text] holds.


Sign in / Sign up

Export Citation Format

Share Document