scholarly journals Asymptotic behaviour and propagation properties of the one-dimensional flow of gas in a porous medium

1983 ◽  
Vol 277 (2) ◽  
pp. 507-507 ◽  
Author(s):  
Juan Luis V{ázquez
1997 ◽  
Vol 8 (4) ◽  
pp. 331-345 ◽  
Author(s):  
AMANDINE AFTALION

The Ginzburg–Landau model for superconductivity is examined in the one-dimensional case. First, putting the Ginzburg–Landau parameter κ formally equal to infinity, the existence of a minimizer of this reduced Ginzburg–Landau energy is proved. Then asymptotic behaviour for large κ of minimizers of the full Ginzburg–Landau energy is analysed and different convergence results are obtained, according to the exterior magnetic field. Numerical computations illustrate the various behaviours.


We consider a parabolic double obstacle problem which is a version of the Allen-Cahn equation u t = Δ u — ϵ -2 ψ '( u ) in Ω x (0, ∞), where Ω is a bounded domain, ϵ is a small constant, and ψ is a double well potential; here we take ψ such that ψ ( u ) = (1 — u 2 ) when | u | ≤ 1 and ψ ( u ) = ∞ when | u | > 1. We study the asymptotic behaviour, as ϵ → 0, of the solution of the double obstacle problem. Under some natural restrictions on the initial data, we show that after a short time (of order ϵ 2 |ln ϵ |), the solution takes value 1 in a region Ω + t and value — 1 in Ω - t , where the region Ω ( Ω + t U Ω - t ) is a thin strip and is contained in either a O ( ϵ |ln ϵ |) or O ( ϵ ) neighbourhood of a hypersurface Γ t which moves with normal velocity equal to its mean curvature. We also study the asymptotic behaviour, as t → ∞, of the solution in the one-dimensional case. In particular, we prove that the ω -limit set consists of a singleton.


2007 ◽  
Vol 17 (08) ◽  
pp. 1261-1278
Author(s):  
ELENA COMPARINI ◽  
MAURA UGHI

We consider a one-dimensional incompressible flow through a porous medium undergoing deformations such that the porosity and the hydraulic conductivity can be considered as functions of the flux intensity. We prove that if one approximates the porosity with a constant then the solution of the hyperbolic problem converges to the classical continuous Green–Ampt solution, also in the presence of shocks. In general, however, the shocks remain present in any approximating solution.


Sign in / Sign up

Export Citation Format

Share Document