flux intensity
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 31)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 7 (3) ◽  
pp. 120-126
Author(s):  
Valery Yanchukovsky ◽  
Vasiliy Kuz'menko

We have carried out an experimental study of the influence of precipitation in the form of snow on measurements of the neutron flux intensity near Earth's surface. We have examined the state of the snow cover and its density, and found out that the density depends on the depth of the snow cover. Using the experimental results, we estimate the neutron absorption path in the snow. Changes in snow cover by 10–12 cm at a depth of 80 cm are shown to cause variations in the monitor count rate with an amplitude of 0.9 %. At the snow depth of 80 cm, the neutron monitor count rate decreases by about 8 %. The observed variations should be attributed to the meteorological effects of cosmic rays. The absorption coefficient of neutrons in the snow was also found from the correlation between the count rate of the neutron monitor and the amount of snow above the detector. We propose a real-time correction of the neutron monitor data for precipitation in the form of snow. For this purpose, we implement continuous monitoring of the amount of snow cover. The monitoring is provided by a snow meter made using a laser rangefinder module. We discuss the results obtained.


2021 ◽  
Vol 7 (3) ◽  
pp. 114-120
Author(s):  
Valery Yanchukovsky ◽  
Vasiliy Kuz'menko

We have carried out an experimental study of the influence of precipitation in the form of snow on measurements of the neutron flux intensity near Earth's surface. We have examined the state of the snow cover and its density, and found out that the density depends on the depth of the snow cover. Using the experimental results, we estimate the neutron absorption path in the snow. Changes in snow cover by 10–12 cm at a depth of 80 cm are shown to cause variations in the monitor count rate with an amplitude of 0.9 %. At the snow depth of 80 cm, the neutron monitor count rate decreases by about 8 %. The observed variations should be attributed to the meteorological effects of cosmic rays. The absorption coefficient of neutrons in the snow was also found from the correlation between the count rate of the neutron monitor and the amount of snow above the detector. We propose a real-time correction of the neutron monitor data for precipitation in the form of snow. For this purpose, we implement continuous monitoring of the amount of snow cover. The monitoring is provided by a snow meter made using a laser rangefinder module. We discuss the results obtained.


2021 ◽  
Vol 28 ◽  
pp. 58-65
Author(s):  
L. R. Hrytsak ◽  
M. Z. Prokopiak ◽  
O. Yu. Mayorova ◽  
Kh. M. Kolisnyk ◽  
N. M. Drobyk

Aim. Study of the dynamics Gentiana lutea L. plant growth processes in vitro depending on the light regime changes of their cultivation in order to develop a scheme to increase their adaptive potential. Methods. Methods of plant cultivation in vitro, biometric method, as well as ANOVA variance analysis and middle group analysis in pairs using the Tukey test (Tukey test) were used. Results. It is shown that the cultivation of G. lutea plants in vitro using 25 W/m2 light flux intensity in the region of photosynthetically active radiation and the ratio of blue (Eb): green (Eg): red (Er) ranges = 41.8%: 42.7 %: 15.5% triggers non-specific photomorphogenesis reactions for intact plants, which lead to poor root system development, stem elongation, formation of small leaves with a thin leaf blade, overall low productivity and low adaptation potential of G. lutea plants to ex vitro and in situ conditions. Increasing the light flux intensity to 44 W/m2 and increasing the red wave proportion up to 20.3% allows not only to improve the bioproductivity of G. lutea plants which are cultivated in vitro, but also to increase the coefficient of microclonal reproduction without the additional use of exogenous growth regulators. The greatest growth of the aboveground and underground parts, increase in effective leaf surface are observed in vitro plants during cultivation at 135 W/m2 light flux intensity and spectral composition Eb: Eg: Er = 29.5%: 32.5%: 38.0%. Conclusions. It is possible to improve plant bioproductivity by changing the light conditions of plant cultivation in vitro, and, accordingly, to increase the adaptive potential to ex vitro and in situ conditions. Keywords: Gentiana lutea L., in vitro plants, light flux intensity, spectral composition, growth parameters.


2021 ◽  
Vol 11 (17) ◽  
pp. 7916
Author(s):  
Krzysztof Gorzkiewicz ◽  
Jerzy W. Mietelski ◽  
Zbigniew Ustrnul ◽  
Piotr Homola ◽  
Renata Kierepko ◽  
...  

This paper presents the results of cosmic ray muons flux monitoring registered by a digital gamma-ray spectrometer’s active shield made of five large plastic scintillators. In traditional, i.e., analogue active shields working in anticoincidence mode with germanium detectors, the generated data are used only as a gating signal and are not stored. However, thanks to digital acquisition applied in designed novel gamma-ray spectrometers enabling offline studies, it has not only become possible to use generated data to reduce the germanium detector background (cosmic rays veto system) but also to initialize long-term monitoring of the muon flux intensity. Furthermore, various analyses methods prove the relevance of the acquired data. Fourier analyses revealed the presence of daily (24 h), near-monthly (27 days) and over bi-monthly (68 days) cycles.


Author(s):  
A.A. Pan’kov ◽  

A mathematical model of the functioning of the indicator polymer piezoelectroluminescent (PEL) coating for diagnosing external mechanical effects - quasi-static pressing of rigid ball particles has been developed. The algorithm of numerical processing of informative intensity of light flux at the output from optical fiber built into indicator coating of optical fiber PEL-sensor is presented. A numerical analysis for the case of single mechanical effect revealed the regularities of influence of the values of the sensor spiral pitch on the informative parts of the resulting spectra of light flux intensity and pressure distribution along the length of the sensor spiral. Informative characteristic points of pressure spectra plots were revealed; these are points of maxima, abscissa and values of which make it possible to find the desired values of radius and pressing force of a rigid ball particle.


2021 ◽  
Vol 12 (1) ◽  
pp. 405-417
Author(s):  
Tao Yao ◽  
Yulong Wang ◽  
Zhihua Wang ◽  
Can Qin

Abstract. Considering the irregularity of wave motion, a wave energy converter (WEC) based on 6-UCU parallel mechanism has been investigated. A buoy connected to moving platform is used to harvest wave energy. Each chain is equipped with the linear generator of the same structure, which can convert the absorbed wave energy into electrical energy. Based on the inverse kinematics analysis of parallel mechanism, the position of the parallel mechanism is solved by using the space closed-loop vector method; the relative motion of stator and translator is obtained. Through electromagnetic numerical simulations, the influences of linear generator parameters such as magnetization mode, air gap, and yoke shape on electromagnetic performance were evaluated. Numerical results show axial magnetization and Halbach magnet array can increase magnetic flux intensity more than radial mode. Furthermore, the rule of electromagnetic resistance is discussed with the change of the speed amplitude and the angle frequency. For a case, dynamic differential equation of the whole system is established. The conversion rate of wave energy is derived.


2021 ◽  
Author(s):  
Vladislav Chinkin ◽  
Viktor Getmanov ◽  
Roman Sidorov ◽  
Alexei Gvishiani ◽  
Mikhail Dobrovolsky ◽  
...  

<p>Muon flux intensity modulation (MFIM) recognition is a relevant solar-terrestrial physics problem. The considered MFIM, recorded on the Earth's surface, are caused by extreme heliospheric events – the geoeffective solar coronal mass ejections.</p><p>The URAGAN muon hodoscope (MH), developed by NRNU MEPhI, a computerized device that measures the intensities of muon fluxes, is used. In the MH, the number of muons falling per unit time on the MH aperture is calculated for the selected system of zenith and azimuthal angles. MH matrix data time series are formed. In the MH data, there are angular modulations due to the action of the hardware function HF, temporal modulations due to atmospheric disturbances and noise: the values of these modulations significantly exceed the values of MFIM of cosmic origin. This circumstance prevents effective MFIM recognition.</p><p>A method for MFIM recognition is proposed, based on the mathematical apparatus of the introduced normalized variation functions for MH matrix data, and focused on overcoming the noted circumstance.</p><p>A two-dimensional normalized HF is defined for MH. A quite realistic hypothesis is accepted about the initialiy uniform muon flux intensity distributions on a small reference time interval, where there are no extreme heliospheric events and the corresponding reference MH data do not contain significant MFIMs. The estimation of the two-dimensional normalized HF is carried out on the basis of a multiparameter model and its optimization fit to the reference MH data. In order to reduce noise errors, the estimate of the two-dimensional normalized HF is subjected to two-dimensional filtering and subsequent threshold filtering.</p><p>Two-dimensional functions of variations of matrix MH datas with respect to two-dimensional normalized AF are calculated. The normalized variation functions are calculated by dividing the two-dimensional functions of variations of matrix MH data by the two-dimensional normalized HF. MFIM recognition method was tested on model and experimental MH data.</p><p>A time series of model matrix MH data containing model MFIM was generated. Testing led to a conclusion that it is possible to recognize MFIM with decreases of about 2-3%. A time series of experimental matrix MH data was generated, in which the model MFIM-containing areas were made. Testing led to a conclusion that it is possible to recognize MFIM with the magnitudes of the decreases almost commensurate with the decreases for the case of model MH data.</p><p>The proposed MFIM recognition method based on the normalized variation functions for matrix MH data has a favorable perspective for its application in solving problems of geomagnetic storm early diagnostics.</p>


2021 ◽  
Author(s):  
Roman Sidorov ◽  
Victor Getmanov ◽  
Vladislav Chinkin ◽  
Alexei Gvishiani ◽  
Michael Dobrovolsky ◽  
...  

<p>Muon flux intensity modulation (MFIM) recognition is a relevant solar-terrestrial physics problem. The MFIM discussed are due to geoeffective solar coronal mass ejections.</p><p>The necessary observations are carried out using a computerized muon hodoscope (MH) URAGAN developed by NRNU MEPhI, registering muon fluxes intensity. In the MH, the number of muons falling on its aperture per unit time is counted. MH matrix data time series are formed, in which angular and temporal modulations take place due to MH design features, athmospheric disturbances and noises, the values of which significantly exceed the MFIM values.</p><p>The MFIM recognition method based on the mathematical apparatus of indicator matrices (IM) and spatial-temporal filtering is proposed.</p><p>The time series of MH matrix data, consisting of a set of Poisson processes corresponding to azimuthal and zenithal elements of MH matrices, are considered.</p><p>A reference time span is assigned where MFIM are known to be missing. For it, matrices of estimates of mathematical expectations are calculated and, taking into account the Poisson property, the matrices of reference confidence intervals are calculated. Next, the current time sections are formed, on which the matrices of the current confidence intervals are calculated. Based on the comparison of the matrices of the reference and current confidence intervals, the current matrices of anomalies are formed, which are compared with the specified threshold matrix. Thresholds exceedings correspond to anomalous events. Binary IM are formed: ones correspond to anomalous events, zeros correspond to the absence of anomalies. Recognition is to analyze IM sequence and identify areas of non-zero elements condensation that lead to the conclusion that there are significant MFIM. To reduce the recognition errors, the space-time IM filtering has been developed.</p><p>MFIM recognition technique, based on the use of IM time series with spatial-temporal filtering has been tested on model and experimental MH data.</p><p>Testing on the generated time series of model Poisson MH matrix data with model MFIM confirmed the conclusion about the possibility of MFIM recognition by the proposed method with a decrease level of 3-4%. Application of spatial-temporal filtering made it possible to recognize MFIM with  decreases with a level half as much.</p><p>Testing on the formed experimental matrix MH data time series with model MFIM led to a conclusion that it is possible to recognize MFIM with the magnitudes of decreases almost commensurate with the decreases for the case of model MH data.</p><p>The proposed MFIM recognition method based on indicator matrices for MH observation data allows optimization of parameters and can be successfully applied to solve problems of MFIM recognition and early diagnostics of geomagnetic storms.</p>


2021 ◽  
Vol 23 ◽  
pp. 100814
Author(s):  
Jie Xiao ◽  
Oisik Das ◽  
Rhoda Afriyie Mensah ◽  
Lin Jiang ◽  
Qiang Xu ◽  
...  

2021 ◽  
Vol 91 (11) ◽  
pp. 1601
Author(s):  
А.С. Антонов ◽  
А.А. Богданов ◽  
А.М. Красильщиков ◽  
Е.Е. Холупенко

A quantitative simulation of a system of optical concentrators based on Winston's hexagonal cones, intended for the registration camera of the TAIGA-IACT Cherenkov gamma-ray telescope, has been performed. The data on the transmission of the cones are obtained; the distributions of the photon flux intensity in the plane of the detector are given. On the basis of the results obtained, an optimal configuration of optical concentrators is proposed, taking into account the design features of the mount, mirror and TAIGA-IACT camera, as well as the features of its new detector units.


Sign in / Sign up

Export Citation Format

Share Document