scholarly journals Negatively curved manifolds with exotic smooth structures

1989 ◽  
Vol 2 (4) ◽  
pp. 899-899 ◽  
Author(s):  
F. T. Farrell ◽  
L. E. Jones
Author(s):  
Christine Escher ◽  
Catherine Searle

Abstract Let ℳ 0 n {\mathcal{M}_{0}^{n}} be the class of closed, simply connected, non-negatively curved Riemannian n-manifolds admitting an isometric, effective, isotropy-maximal torus action. We prove that if M ∈ ℳ 0 n {M\in\mathcal{M}_{0}^{n}} , then M is equivariantly diffeomorphic to the free, linear quotient by a torus of a product of spheres of dimensions greater than or equal to 3. As a special case, we then prove the Maximal Symmetry Rank Conjecture for all M ∈ ℳ 0 n {M\in\mathcal{M}_{0}^{n}} . Finally, we show the Maximal Symmetry Rank Conjecture for simply connected, non-negatively curved manifolds holds for dimensions less than or equal to 9 without additional assumptions on the torus action.


2009 ◽  
Vol 29 (4) ◽  
pp. 1141-1161
Author(s):  
S. FENLEY ◽  
R. FERES ◽  
K. PARWANI

AbstractLet (M,ℱ) be a compact codimension-one foliated manifold whose leaves are endowed with Riemannian metrics, and consider continuous functions on M that are harmonic along the leaves of ℱ. If every such function is constant on leaves, we say that (M,ℱ) has the Liouville property. Our main result is that codimension-one foliated bundles over compact negatively curved manifolds satisfy the Liouville property. A related result for ℝ-covered foliations is also established.


The disc embedding theorem provides a detailed proof of the eponymous theorem in 4-manifold topology. The theorem, due to Michael Freedman, underpins virtually all of our understanding of 4-manifolds in the topological category. Most famously, this includes the 4-dimensional topological Poincaré conjecture. Combined with the concurrent work of Simon Donaldson, the theorem reveals a remarkable disparity between the topological and smooth categories for 4-manifolds. A thorough exposition of Freedman’s proof of the disc embedding theorem is given, with many new details. A self-contained account of decomposition space theory, a beautiful but outmoded branch of topology that produces non-differentiable homeomorphisms between manifolds, is provided. Techniques from decomposition space theory are used to show that an object produced by an infinite, iterative process, which we call a skyscraper, is homeomorphic to a thickened disc, relative to its boundary. A stand-alone interlude explains the disc embedding theorem’s key role in smoothing theory, the existence of exotic smooth structures on Euclidean space, and all known homeomorphism classifications of 4-manifolds via surgery theory and the s-cobordism theorem. The book is written to be accessible to graduate students working on 4-manifolds, as well as researchers in related areas. It contains over a hundred professionally rendered figures.


2021 ◽  
pp. 295-330
Author(s):  
Mark Powell ◽  
Arunima Ray

The development of topological 4-manifold theory is described in the form of a flowchart showing the interdependence among many key statements in the theory. In particular, the flowchart demonstrates how the theory crucially relies on the constructions in this book, what goes into the work of Quinn on smoothing, normal bundles, and transversality, and what is needed to deduce the famous consequences, such as the classification of closed, simply connected, topological 4-manifolds, the category preserving Poincaré conjecture, and the existence of exotic smooth structures on 4-dimensional Euclidean space. Precise statements of the results, brief indications of some proofs, and extensive references are provided.


2005 ◽  
Vol 57 (2) ◽  
pp. 251-266
Author(s):  
M. Cocos

AbstractThe present paper is concerned with the study of the L2 cohomology spaces of negatively curved manifolds. The first half presents a finiteness and vanishing result obtained under some curvature assumptions, while the second half identifies a class of metrics having non-trivial L2 cohomology for degree equal to the half dimension of the space. For the second part we rely on the existence and regularity properties of the solution for the heat equation for forms.


Sign in / Sign up

Export Citation Format

Share Document