On some extremal problems of the theory of analytic functions

Author(s):  
S. Ja. Havinson
1962 ◽  
Vol 14 ◽  
pp. 540-551 ◽  
Author(s):  
W. C. Royster

Let Σ represent the class of analytic functions(1)which are regular, except for a simple pole at infinity, and univalent in |z| > 1 and map |z| > 1 onto a domain whose complement is starlike with respect to the origin. Further let Σ- 1 be the class of inverse functions of Σ which at w = ∞ have the expansion(2).In this paper we develop variational formulas for functions of the classes Σ and Σ- 1 and obtain certain properties of functions that extremalize some rather general functionals pertaining to these classes. In particular, we obtain precise upper bounds for |b2| and |b3|. Precise upper bounds for |b1|, |b2| and |b3| are given by Springer (8) for the general univalent case, provided b0 =0.


2013 ◽  
Vol 94 (2) ◽  
pp. 202-221
Author(s):  
KEIKO DOW ◽  
D. R. WILKEN

AbstractExtreme points of compact, convex integral families of analytic functions are investigated. Knowledge about extreme points provides a valuable tool in the optimization of linear extremal problems. The functions studied are determined by a two-parameter collection of kernel functions integrated against measures on the torus. For specific choices of the parameters many families from classical geometric function theory are included. These families include the closed convex hull of the derivatives of normalized close-to-convex functions, the ratio of starlike functions of different orders, as well as many others. The main result introduces a surprising new class of extreme points.


2006 ◽  
Vol 70 (4) ◽  
pp. 841-856
Author(s):  
D V Prokhorov ◽  
S V Romanova

10.53733/87 ◽  
2021 ◽  
Vol 51 ◽  
pp. 39-48
Author(s):  
Keiko Dow

Non extreme points of compact, convex integral families of analytic functions are investigated. Knowledge about extreme points provides a valuable tool in the optimization of linear extremal problems. The functions studied are determined by a 2-parameter collection of kernel functions integrated against measures on the torus. Families from classical geometric function theory such as the closed convex hull of the derivatives of normalized close-to-convex functions, the ratio of starlike functions of different orders, as well as many others are included. However for these families of analytic functions, identifying “all” the extreme points remains a difficult challenge except in some special cases. Aharonov and Friedland [1] identified a band of points on the unit circle which corresponds to the set of extreme points for these 2-parameter collections of kernel functions. Later this band of extreme points was further extended by introducing a new technique by Dow and Wilken [3]. On the other hand, a technique to identify a non extreme point was not investigated much in the past probably because identifying non extreme points does not directly help solving the optimization of linear extremal problems. So far only one point on the unit circle has beenidentified which corresponds to a non extreme point for a 2-parameter collections of kernel functions. This leaves a big gap between the band of extreme points and one non extreme point. The author believes it is worth developing some techniques, and identifying non extreme points will shed a new light in the exact determination of the extreme points. The ultimate goal is to identify the point on the unit circle that separates the band of extreme points from non extreme points. The main result introduces a new class of non extreme points.


Sign in / Sign up

Export Citation Format

Share Document