On equivalent norms for fractional spaces

Author(s):  
K. K. Golovkin
2017 ◽  
Vol 445 (2) ◽  
pp. 1200-1220 ◽  
Author(s):  
Gustavo Araújo ◽  
P. Jiménez-Rodríguez ◽  
Gustavo A. Muñoz-Fernández ◽  
Juan B. Seoane-Sepúlveda
Keyword(s):  

2018 ◽  
Vol 149 (03) ◽  
pp. 593-615
Author(s):  
Vincenzo Ambrosio ◽  
Giovanni Molica Bisci

We study the existence and multiplicity of periodic weak solutions for a non-local equation involving an odd subcritical nonlinearity which is asymptotically linear at infinity. We investigate such problem by applying the pseudo-index theory developed by Bartolo, Benci and Fortunato [11] after transforming the problem to a degenerate elliptic problem in a half-cylinder with a Neumann boundary condition, via a Caffarelli-Silvestre type extension in periodic setting. The periodic nonlocal case, considered here, presents, respect to the cases studied in the literature, some new additional difficulties and a careful analysis of the fractional spaces involved is necessary.


2012 ◽  
Vol 16 (4) ◽  
pp. 1315-1348 ◽  
Author(s):  
Gianluca Calcagni ◽  
Giuseppe Nardelli
Keyword(s):  

1987 ◽  
Vol 126 (1) ◽  
pp. 238-249 ◽  
Author(s):  
John P. Nolan ◽  
Zachariah Sinkala
Keyword(s):  

1979 ◽  
Vol 86 (2) ◽  
pp. 261-270 ◽  
Author(s):  
M. A. Youngson

1. Introduction. Recently Kaplansky suggested the definition of a suitable Jordan analogue of B*-algebras, which we call J B*-algebras (see (10) and (11)). In this article, we give a characterization of those complex unital Banach Jordan algebras which are J B*-algebras in an equivalent norm. This is done by generalizing results of Bonsall ((3) and (4)) to give necessary and sufficient conditions on a real unital Banach Jordan algebra under which it is the self-adjoint part of a J B*-algebra in an equivalent norm. As a corollary we also obtain a characterization of the cones in a Banach Jordan algebra which are the set of positive elements of a J B*-algebra.


2019 ◽  
Vol 19 (1) ◽  
pp. 113-132 ◽  
Author(s):  
Vincenzo Ambrosio ◽  
Giovany M. Figueiredo ◽  
Teresa Isernia ◽  
Giovanni Molica Bisci

Abstract We consider the following class of fractional Schrödinger equations: (-\Delta)^{\alpha}u+V(x)u=K(x)f(u)\quad\text{in }\mathbb{R}^{N}, where {\alpha\in(0,1)} , {N>2\alpha} , {(-\Delta)^{\alpha}} is the fractional Laplacian, V and K are positive continuous functions which vanish at infinity, and f is a continuous function. By using a minimization argument and a quantitative deformation lemma, we obtain the existence of a sign-changing solution. Furthermore, when f is odd, we prove that the above problem admits infinitely many nontrivial solutions. Our result extends to the fractional framework some well-known theorems proved for elliptic equations in the classical setting. With respect to these cases studied in the literature, the nonlocal one considered here presents some additional difficulties, such as the lack of decompositions involving positive and negative parts, and the non-differentiability of the Nehari Manifold, so that a careful analysis of the fractional spaces involved is necessary.


Sign in / Sign up

Export Citation Format

Share Document