scholarly journals Equivalent norms in polynomial spaces and applications

2017 ◽  
Vol 445 (2) ◽  
pp. 1200-1220 ◽  
Author(s):  
Gustavo Araújo ◽  
P. Jiménez-Rodríguez ◽  
Gustavo A. Muñoz-Fernández ◽  
Juan B. Seoane-Sepúlveda
Keyword(s):  
1987 ◽  
Vol 126 (1) ◽  
pp. 238-249 ◽  
Author(s):  
John P. Nolan ◽  
Zachariah Sinkala
Keyword(s):  

1979 ◽  
Vol 86 (2) ◽  
pp. 261-270 ◽  
Author(s):  
M. A. Youngson

1. Introduction. Recently Kaplansky suggested the definition of a suitable Jordan analogue of B*-algebras, which we call J B*-algebras (see (10) and (11)). In this article, we give a characterization of those complex unital Banach Jordan algebras which are J B*-algebras in an equivalent norm. This is done by generalizing results of Bonsall ((3) and (4)) to give necessary and sufficient conditions on a real unital Banach Jordan algebra under which it is the self-adjoint part of a J B*-algebra in an equivalent norm. As a corollary we also obtain a characterization of the cones in a Banach Jordan algebra which are the set of positive elements of a J B*-algebra.


2011 ◽  
Vol 59 (2) ◽  
pp. 165-174
Author(s):  
Ha Huy Bang ◽  
Nguyen Van Hoang ◽  
Vu Nhat Huy

1989 ◽  
Vol 32 (3) ◽  
pp. 274-280
Author(s):  
D. E. G. Hare

AbstractWe introduce a new type of differentiability, called cofinite Fréchet differentiability. We show that the convex point-of-continuity property of Banach spaces is dual to the cofinite Fréchet differentiability of all equivalent norms. A corresponding result for dual spaces with the weak* convex point-of-continuity property is also established.


2008 ◽  
Vol 50 (3) ◽  
pp. 429-432 ◽  
Author(s):  
ANTONIO AIZPURU ◽  
FRANCISCO J GARCÍA-PACHECO

AbstractIt is shown that every L2-summand vector of a dual real Banach space is a norm-attaining functional. As consequences, the L2-summand vectors of a dual real Banach space can be determined by the L2-summand vectors of its predual; for every n ∈ , every real Banach space can be equivalently renormed so that the set of norm-attaining functionals is n-lineable; and it is easy to find equivalent norms on non-reflexive dual real Banach spaces that are not dual norms.


2010 ◽  
Vol 88 (1) ◽  
pp. 19-27 ◽  
Author(s):  
SORINA BARZA ◽  
JAVIER SORIA

AbstractFor an increasing weight w in Bp (or equivalently in Ap), we find the best constants for the inequalities relating the standard norm in the weighted Lorentz space Λp(w) and the dual norm.


Sign in / Sign up

Export Citation Format

Share Document