A periodic problem in the calculus of variations and deformations of Hamiltonian systems

Author(s):  
V. S. Bondarchuk
Author(s):  
Sonia Acinas ◽  
Fernando Mazzone

In this paper, we obtain existence results of periodic solutions of hamiltonian systems in the Orlicz-Sobolev space \(W^1L^\Phi([0,T])\). We employ the direct method of calculus of variations and we consider  a potential  function \(F\) satisfying the inequality \(|\nabla F(t,x)|\leq b_1(t) \Phi_0'(|x|)+b_2(t)\), with \(b_1, b_2\in L^1\) and  certain \(N\)-functions \(\Phi_0\).


2018 ◽  
Vol 14 (3) ◽  
pp. 5708-5733 ◽  
Author(s):  
Vyacheslav Michailovich Somsikov

The analytical review of the papers devoted to the deterministic mechanism of irreversibility (DMI) is presented. The history of solving of the irreversibility problem is briefly described. It is shown, how the DMI was found basing on the motion equation for a structured body. The structured body was given by a set of potentially interacting material points. The taking into account of the body’s structure led to the possibility of describing dissipative processes. This possibility caused by the transformation of the body’s motion energy into internal energy. It is shown, that the condition of holonomic constraints, which used for obtaining of the canonical formalisms of classical mechanics, is excluding the DMI in Hamiltonian systems. The concepts of D-entropy and evolutionary non-linearity are discussed. The connection between thermodynamics and the laws of classical mechanics is shown. Extended forms of the Lagrange, Hamilton, Liouville, and Schrödinger equations, which describe dissipative processes, are presented.


2013 ◽  
Vol 1 ◽  
pp. 200-231 ◽  
Author(s):  
Andrea C.G. Mennucci

Abstract In this paper we discuss asymmetric length structures and asymmetric metric spaces. A length structure induces a (semi)distance function; by using the total variation formula, a (semi)distance function induces a length. In the first part we identify a topology in the set of paths that best describes when the above operations are idempotent. As a typical application, we consider the length of paths defined by a Finslerian functional in Calculus of Variations. In the second part we generalize the setting of General metric spaces of Busemann, and discuss the newly found aspects of the theory: we identify three interesting classes of paths, and compare them; we note that a geodesic segment (as defined by Busemann) is not necessarily continuous in our setting; hence we present three different notions of intrinsic metric space.


1986 ◽  
Author(s):  
Konstantin Mischaikow
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document