scholarly journals FASPR: an open-source tool for fast and accurate protein side-chain packing

2020 ◽  
Vol 36 (12) ◽  
pp. 3758-3765 ◽  
Author(s):  
Xiaoqiang Huang ◽  
Robin Pearce ◽  
Yang Zhang

Abstract Motivation Protein structure and function are essentially determined by how the side-chain atoms interact with each other. Thus, accurate protein side-chain packing (PSCP) is a critical step toward protein structure prediction and protein design. Despite the importance of the problem, however, the accuracy and speed of current PSCP programs are still not satisfactory. Results We present FASPR for fast and accurate PSCP by using an optimized scoring function in combination with a deterministic searching algorithm. The performance of FASPR was compared with four state-of-the-art PSCP methods (CISRR, RASP, SCATD and SCWRL4) on both native and non-native protein backbones. For the assessment on native backbones, FASPR achieved a good performance by correctly predicting 69.1% of all the side-chain dihedral angles using a stringent tolerance criterion of 20°, compared favorably with SCWRL4, CISRR, RASP and SCATD which successfully predicted 68.8%, 68.6%, 67.8% and 61.7%, respectively. Additionally, FASPR achieved the highest speed for packing the 379 test protein structures in only 34.3 s, which was significantly faster than the control methods. For the assessment on non-native backbones, FASPR showed an equivalent or better performance on I-TASSER predicted backbones and the backbones perturbed from experimental structures. Detailed analyses showed that the major advantage of FASPR lies in the optimal combination of the dead-end elimination and tree decomposition with a well optimized scoring function, which makes FASPR of practical use for both protein structure modeling and protein design studies. Availability and implementation The web server, source code and datasets are freely available at https://zhanglab.ccmb.med.umich.edu/FASPR and https://github.com/tommyhuangthu/FASPR. Supplementary information Supplementary data are available at Bioinformatics online.

2014 ◽  
Vol 10 (4) ◽  
Author(s):  
Jaume Bonet ◽  
Andras Fiser ◽  
Baldo Oliva ◽  
Narcis Fernandez-Fuentes

AbstractProtein structures are made up of periodic and aperiodic structural elements (i.e., α-helices, β-strands and loops). Despite the apparent lack of regular structure, loops have specific conformations and play a central role in the folding, dynamics, and function of proteins. In this article, we reviewed our previous works in the study of protein loops as local supersecondary structural motifs or Smotifs. We reexamined our works about the structural classification of loops (ArchDB) and its application to loop structure prediction (ArchPRED), including the assessment of the limits of knowledge-based loop structure prediction methods. We finalized this article by focusing on the modular nature of proteins and how the concept of Smotifs provides a convenient and practical approach to decompose proteins into strings of concatenated Smotifs and how can this be used in computational protein design and protein structure prediction.


2015 ◽  
Vol 32 (6) ◽  
pp. 843-849 ◽  
Author(s):  
Rhys Heffernan ◽  
Abdollah Dehzangi ◽  
James Lyons ◽  
Kuldip Paliwal ◽  
Alok Sharma ◽  
...  

Abstract Motivation: Solvent exposure of amino acid residues of proteins plays an important role in understanding and predicting protein structure, function and interactions. Solvent exposure can be characterized by several measures including solvent accessible surface area (ASA), residue depth (RD) and contact numbers (CN). More recently, an orientation-dependent contact number called half-sphere exposure (HSE) was introduced by separating the contacts within upper and down half spheres defined according to the Cα-Cβ (HSEβ) vector or neighboring Cα-Cα vectors (HSEα). HSEα calculated from protein structures was found to better describe the solvent exposure over ASA, CN and RD in many applications. Thus, a sequence-based prediction is desirable, as most proteins do not have experimentally determined structures. To our best knowledge, there is no method to predict HSEα and only one method to predict HSEβ. Results: This study developed a novel method for predicting both HSEα and HSEβ (SPIDER-HSE) that achieved a consistent performance for 10-fold cross validation and two independent tests. The correlation coefficients between predicted and measured HSEβ (0.73 for upper sphere, 0.69 for down sphere and 0.76 for contact numbers) for the independent test set of 1199 proteins are significantly higher than existing methods. Moreover, predicted HSEα has a higher correlation coefficient (0.46) to the stability change by residue mutants than predicted HSEβ (0.37) and ASA (0.43). The results, together with its easy Cα-atom-based calculation, highlight the potential usefulness of predicted HSEα for protein structure prediction and refinement as well as function prediction. Availability and implementation: The method is available at http://sparks-lab.org. Contact: [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


2006 ◽  
Vol 04 (06) ◽  
pp. 1197-1216 ◽  
Author(s):  
ZEYAR AUNG ◽  
KIAN-LEE TAN

We propose a detailed protein structure alignment method named "MatAlign". It is a two-step algorithm. Firstly, we represent 3D protein structures as 2D distance matrices, and align these matrices by means of dynamic programming in order to find the initially aligned residue pairs. Secondly, we refine the initial alignment iteratively into the optimal one according to an objective scoring function. We compare our method against DALI and CE, which are among the most accurate and the most widely used of the existing structural comparison tools. On the benchmark set of 68 protein structure pairs by Fischer et al., MatAlign provides better alignment results, according to four different criteria, than both DALI and CE in a majority of cases. MatAlign also performs as well in structural database search as DALI does, and much better than CE does. MatAlign is about two to three times faster than DALI, and has about the same speed as CE. The software and the supplementary information for this paper are available at . .


2005 ◽  
Vol 03 (01) ◽  
pp. 103-126 ◽  
Author(s):  
K. C. DUKKA BAHADUR ◽  
ETSUJI TOMITA ◽  
JUN'ICHI SUZUKI ◽  
TATSUYA AKUTSU

"Protein Side-chain Packing" has an ever-increasing application in the field of bio-informatics, dating from the early methods of homology modeling to protein design and to the protein docking. However, this problem is computationally known to be NP-hard. In this regard, we have developed a novel approach to solve this problem using the notion of a maximum edge-weight clique. Our approach is based on efficient reduction of protein side-chain packing problem to a graph and then solving the reduced graph to find the maximum clique by applying an efficient clique finding algorithm developed by our co-authors. Since our approach is based on deterministic algorithms in contrast to the various existing algorithms based on heuristic approaches, our algorithm guarantees of finding an optimal solution. We have tested this approach to predict the side-chain conformations of a set of proteins and have compared the results with other existing methods. We have found that our results are favorably comparable or better than the results produced by the existing methods. As our test set contains a protein of 494 residues, we have obtained considerable improvement in terms of size of the proteins and in terms of the efficiency and the accuracy of prediction.


2018 ◽  
Author(s):  
Siyuan Liu ◽  
Xilun Xiang ◽  
Haiguang Liu

ABSTRACTProtein structure prediction relies on two major components, a method to generate good models that are close to the native structure and a scoring function that can select the good models. Based on the statistics from known structures in the protein data bank, a statistical energy function is derived to reflect the amino acid neighbourhood preferences. The neighbourhood of one amino acid is defined by its contacting residues, and the energy function is determined by the neighbhoring residue types and relative positions. A scoring algorithm, Nepre, has been implemented and its performance was tested with several decoy sets. The results show that the Nepre program can be applied in model ranking to improve the success rate in structure predictions.


2020 ◽  
Author(s):  
Lu-yun Wu ◽  
Xia-yu Xia ◽  
Xian-ming Pan

AbstractProtein structure resolution has lagged far behind sequence determination, as it is often laborious and time-consuming to resolve individual protein structure – more often than not even impossible. For computational prediction, due to the lack of detailed knowledge on the folding driving forces, how to design an energy function is still an open question. Furthermore, an effective criterion to evaluate the performance of the energy function is also lacking. Here we present a novel knowledge-based-energy scoring function, simply considering the interactions of peptide bonds, rather than, as conventionally, the residues or atoms as the most important energy contribution. This energy scoring was evaluated by selecting the X-ray structure from a large number of possibilities. It not only outperforms the best of the previously published statistical potentials, but also has very low computational expense. Besides, we suggest an alternative criterion to evaluate the performance of the energy scoring function, measured by the template modeling score of the selected rank-one. We argue that the comparison should allow for some deviation between the x-ray and predicted structures. Collectively, this accurate and simple energy scoring function, together with the optimized criterion, will significantly advance the computational protein structure prediction.


1970 ◽  
Vol 19 (2) ◽  
pp. 217-226
Author(s):  
S. M. Minhaz Ud-Dean ◽  
Mahdi Muhammad Moosa

Protein structure prediction and evaluation is one of the major fields of computational biology. Estimation of dihedral angle can provide information about the acceptability of both theoretically predicted and experimentally determined structures. Here we report on the sequence specific dihedral angle distribution of high resolution protein structures available in PDB and have developed Sasichandran, a tool for sequence specific dihedral angle prediction and structure evaluation. This tool will allow evaluation of a protein structure in pdb format from the sequence specific distribution of Ramachandran angles. Additionally, it will allow retrieval of the most probable Ramachandran angles for a given sequence along with the sequence specific data. Key words: Torsion angle, φ-ψ distribution, sequence specific ramachandran plot, Ramasekharan, protein structure appraisal D.O.I. 10.3329/ptcb.v19i2.5439 Plant Tissue Cult. & Biotech. 19(2): 217-226, 2009 (December)


Sign in / Sign up

Export Citation Format

Share Document