scholarly journals Establishment of a new sex-determining allele driven by sexually antagonistic selection

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takahiro Sakamoto ◽  
Hideki Innan

Abstract The turnover of sex-determining loci has repeatedly occurred in a number of species, rather than having a diverged pair of sex chromosomes. We model the turnover process by considering a linked locus under sexually antagonistic selection. The entire process of a turnover may be divided into two phases, which are referred to as the stochastic and deterministic phases. The stochastic phase is when a new sex-determining allele just arises and is still rare and random genetic drift plays an important role. In the deterministic phase, the new allele further increases in frequency by positive selection. The theoretical results currently available are for the deterministic phase, which demonstrated that a turnover of a newly arisen sex-determining locus could benefit from selection at a linked locus under sexually antagonistic selection, by assuming that sexually antagonistic selection works in a form of balancing selection. In this work, we provide a comprehensive theoretical description of the entire process from the stochastic phase to the deterministic phase. In addition to balancing selection, we explore several other modes of selection on the linked locus. Our theory allows us make a quantitative argument on the rate of turnover and the effect of the mode of selection at the linked locus. We also performed simulations to explore the pattern of polymorphism around the new sex-determining locus. We find that the pattern of polymorphism is informative to infer how selection worked through the turnover process.

2020 ◽  
Author(s):  
T. Sakamoto ◽  
H. Innan

ABSTRACTSome species undergo frequent turnovers of sex-determining locus, rather than having stable diverged sex chromosomes. In such species, how often turnover occurs is a fundamental evolutionary question. We model the process with considering a linked locus under sexually antagonistic selection. The entire process of a turnover may be divided into two phases, which are referred to as the stochastic and deterministic phases. The stochastic phase is when a new sex-determining allele just arises and is still rare and random genetic drift plays an important role. In the deterministic phase, the new allele further increases in frequency by positive selection. The theoretical results currently available are for the deterministic phase, which demonstrated that a turnover of a newly arisen sex determining locus could benefit from selection at a linked locus under sexually antagonistic selection, by assuming that sexually antagonistic selection works in a form of balancing selection. In this work, we provide a comprehensive theoretical description of the entire process from the stochastic phase to the deterministic phase. In addition to balancing selection, we explore several other modes of selection on the linked locus. Our theory allows us make a quantitative argument on the rate of turnover and the effect of the mode of selection at the linked locus. We also performed simulations to explore the pattern of polymorphism around the new sex determining locus. We find that the pattern of polymorphism is informative to infer how selection worked through the turnover process.


2021 ◽  
Author(s):  
Lorenzo Talarico ◽  
Silvio Marta ◽  
Anna Rita Rossi ◽  
Simone Crescenzo ◽  
Gerardo Petrosino ◽  
...  

Evolution ◽  
2006 ◽  
Vol 60 (4) ◽  
pp. 643 ◽  
Author(s):  
Michael J. Wade ◽  
Charles J. Goodnight

Genetics ◽  
2004 ◽  
Vol 166 (3) ◽  
pp. 1155-1164 ◽  
Author(s):  
Daniel Shriner ◽  
Raj Shankarappa ◽  
Mark A. Jensen ◽  
David C. Nickle ◽  
John E. Mittler ◽  
...  

2016 ◽  
Vol 27 (4) ◽  
pp. 467-492 ◽  
Author(s):  
Tat Dat Tran ◽  
Julian Hofrichter ◽  
Jürgen Jost

Evolution ◽  
2006 ◽  
Vol 60 (10) ◽  
pp. 2168-2181 ◽  
Author(s):  
Matthew R. Robinson ◽  
Jill G. Pilkington ◽  
Tim H. Clutton-Brock ◽  
Josephine M. Pemberton ◽  
Loeske E.B. Kruuk

2018 ◽  
Author(s):  
Antonios Kioukis ◽  
Pavlos Pavlidis

The evolution of a population by means of genetic drift and natural selection operating on a gene regulatory network (GRN) of an individual has not been scrutinized in depth. Thus, the relative importance of various evolutionary forces and processes on shaping genetic variability in GRNs is understudied. Furthermore, it is not known if existing tools that identify recent and strong positive selection from genomic sequences, in simple models of evolution, can detect recent positive selection when it operates on GRNs. Here, we propose a simulation framework, called EvoNET, that simulates forward-in-time the evolution of GRNs in a population. Since the population size is finite, random genetic drift is explicitly applied. The fitness of a mutation is not constant, but we evaluate the fitness of each individual by measuring its genetic distance from an optimal genotype. Mutations and recombination may take place from generation to generation, modifying the genotypic composition of the population. Each individual goes through a maturation period, where its GRN reaches equilibrium. At the next step, individuals compete to produce the next generation. As time progresses, the beneficial genotypes push the population higher in the fitness landscape. We examine properties of the GRN evolution such as robustness against the deleterious effect of mutations and the role of genetic drift. We confirm classical results from Andreas Wagner’s work that GRNs show robustness against mutations and we provide new results regarding the interplay between random genetic drift and natural selection.


Sign in / Sign up

Export Citation Format

Share Document