genetic variation
Recently Published Documents





2023 ◽  
Vol 83 ◽  
S. Malik ◽  
A. Javid ◽  
Hamidullah ◽  
M. A. Iqbal ◽  
A. Hussain ◽  

Abstract The present study reports the existence of cliff racer, Platyceps rhodorachis from the plains of Punjab, Pakistan. A total of 10 specimens were captured during the field surveys from June to September, 2018 from different sites of Punjab. Platyceps rhodorachis was identify on the basis of morphology and confirmed through COI gene sequences. The obtained DNA sequences have shown reliable and exact species identification. Newly produced DNA sequences of Platyceps rhodorachis were submitted to GenBank and accession numbers were obtained (MK936174.1, MK941839.1 and MT790210.1). N-J tree based on COI sequences of Platyceps rhodorachis clearly separated as out-group with other members of family Colubridae based on p-distance. The intra-specific genetic variation ranges from 12% to 18%. The DNA sequences of Platyceps rhodorachis kashmirensis, Platyceps rhodorachis ladacensis, Platyceps ventromaculatus, Platyceps ventromaculatus bengalensis and Platyceps ventromaculatus indusai are not available at NCBI to validate their taxonomic positions. In our recommendations, a large scale molecular based identification of Pakistan’s herpetofauna is required to report more new or subspecies from country.

2024 ◽  
Vol 55 (11) ◽  
pp. 1008-1015
O Ukkola ◽  
A Tremblay ◽  
G Sun ◽  
Y C Chagnon ◽  
C Bouchard

2022 ◽  
Vol 12 ◽  
Fengyu Che ◽  
Jiangang Zhao ◽  
Yujuan Zhao ◽  
Zhi Wang ◽  
Liyu Zhang ◽  

Aim: To determine the etiology of a Chinese family with thrombocytopenia by analyzing the clinical features and genetic variation.Methods: Clinical profiles and genomic DNA extracts of the family members were collected for the study. Whole exome sequencing and Sanger sequencing was used to detect the associated genetic variation and verify the family co-segregation respectively. Bioinformatics analysis assessed the pathogenicity of missense mutations.Results: The study reported a 3-generation pedigree including eight family members with thrombocytopenia. The platelet counts of the patients were varied, ranging from 38 to 110 × 109/L (reference range: 150–450 x 109/L). The mean volumes and morphology of the sampled platelet were both normal. The bleeding abnormality and mitochondriopathy were not observed in all the patients. Clinical signs of thrombocytopenia were mild. A novel heterozygous missense variant c.79C > T (p.His27Tyr) was identified in CYCS gene associated with autosomal dominant thrombocytopenia.Conclusion: We report the first large family with autosomal dominant non-syndromic thrombocytopenia 4 in a Chinese family, a novel heterozygous missense variant c.79C > T (p.His27Tyr) was identified. The whole exome sequencing is an efficient tool for screening the variants specifically associated with the disease. The finding enriches the mutation spectrum of CYCS gene and laid a foundation for future studies on the correlation between genotype and phenotype.

Kimberley G. Barrett ◽  
Geneviève Amaral ◽  
Melanie Elphinstone ◽  
Malcolm L. McAdie ◽  
Corey S. Davis ◽  

AbstractCaptive breeding is often a last resort management option in the conservation of endangered species which can in turn lead to increased risk of inbreeding depression and loss of genetic diversity. Thus, recording breeding events via studbook for the purpose of estimating relatedness, and facilitating mating pair selection to minimize inbreeding, is common practice. However, as founder relatedness is often unknown, loss of genetic variation and inbreeding cannot be entirely avoided. Molecular genotyping is slowly being adopted in captive breeding programs, however achieving sufficient resolution can be challenging in small, low diversity, populations. Here, we evaluate the success of the Vancouver Island marmot (Marmota vancouverensis; VIM; among the worlds most endangered mammals) captive breeding program in preventing inbreeding and maintaining genetic diversity. We explored the use of high-throughput amplicon sequencing of microsatellite regions to assay greater genetic variation in both captive and wild populations than traditional length-based fragment analysis. Contrary to other studies, this method did not considerably increase diversity estimates, suggesting: (1) that the technique does not universally improve resolution, and (2) VIM have exceedingly low diversity. Studbook estimates of pairwise relatedness and inbreeding in the current population were weakly, but positively, correlated to molecular estimates. Thus, current studbooks are moderately effective at predicting genetic similarity when founder relatedness is known. Finally, we found that captive and wild populations did not differ in allelic frequencies, and conservation efforts to maintain diversity have been successful with no significant decrease in diversity over the last three generations.

2022 ◽  
pp. cebp.0583.2021
Brittany N Chao ◽  
Danielle M Carrick ◽  
Kelly K Filipski ◽  
Stefanie A Nelson

2022 ◽  
Irene S. Breider ◽  
R. Chris Gaynor ◽  
Gregor Gorjanc ◽  
Steve Thorn ◽  
Manish K. Pandey ◽  

Abstract Some of the most economically important traits in plant breeding show highly polygenic inheritance. Genetic variation is a key determinant of the rates of genetic improvement in selective breeding programs. Rapid progress in genetic improvement comes at the cost of a rapid loss of genetic variation. Germplasm available through expired Plant Variety Protection (exPVP) lines is a potential resource of variation previously lost in elite breeding programs. Introgression for polygenic traits is challenging, as many genes have a small effect on the trait of interest. Here we propose a way to overcome these challenges with a multi-part pre-breeding program that has feedback pathways to optimise recurrent genomic selection. The multi-part breeding program consists of three components, namely a bridging component, population improvement, and product development. Parameters influencing the multi-part program were optimised with the use of a grid search. Haploblock effect and origin were investigated. Results showed that the introgression of exPVP germplasm using an optimised multi-part breeding strategy resulted in 1.53 times higher genetic gain compared to a two-part breeding program. Higher gain was achieved through reducing the performance gap between exPVP and elite germplasm and breaking down linkage drag. Both first and subsequent introgression events showed to be successful. In conclusion, the multi-part breeding strategy has a potential to improve long-term genetic gain for polygenic traits and therefore, potential to contribute to global food security.

Sign in / Sign up

Export Citation Format

Share Document