scholarly journals Fixation, Segregation and Linkage of Allozyme Loci in Inbred Families of the Pacific Oyster Crassostrea gigas (Thunberg): Implications for the Causes of Inbreeding Depression

Genetics ◽  
1997 ◽  
Vol 146 (1) ◽  
pp. 321-334 ◽  
Author(s):  
Daniel J McGoldrick ◽  
Dennis Hedgecock

The effect that inbreeding has on the fixation and segregation of genes has rarely been confirmed by direct observation. Here, fixation, segregation, and linkage of allozymes is investigated in the progeny of self-fertilized hermaphrodites of the normally outcrossing Pacific oyster Crassostrea gigas. The estimate of fixation pooled over loci, individuals, and families, F = 0.462, is significantly lower than the expected value of 0.5. Log-likelihood ratios reveal significant heterogeneity in fixation among individuals, among families, and among loci. In addition, the grand pooled segregation ratio, 127:243:54, deviates significantly from 1:2:1, with a bias against homozygotes for alleles of lesser frequency in the natural population. Segregation ratios for 11 of 14 loci are significantly heterogeneous among families, and exact tests for segregation within families reveal 16 significant results out of 51 tests. Thus, fixation and segregation of allozyme markers in inbred oyster families deviates from the expectations of neutral inbreeding theory. Di-genic disequilibria are significant for four of 74 di-locus pairs revealing two linkage groups. Strong viability selection is apparently conditional on the genotype of the hermaphrodite-founders and is largely focused on these two linkage groups. These genetic effects are explained by interaction between cis-linked factors and polymorphic regulatory backgrounds.

2020 ◽  
Vol 10 (12) ◽  
pp. 4691-4705
Author(s):  
Xiaoshen Yin ◽  
Alberto Arias-Pérez ◽  
Tevfik Hamdi Kitapci ◽  
Dennis Hedgecock

Studies of linkage and linkage mapping have advanced genetic and biological knowledge for over 100 years. In addition to their growing role, today, in mapping phenotypes to genotypes, dense linkage maps can help to validate genome assemblies. Previously, we showed that 40% of scaffolds in the first genome assembly for the Pacific oyster Crassostrea gigas were chimeric, containing single nucleotide polymorphisms (SNPs) mapping to different linkage groups. Here, we merge 14 linkage maps constructed of SNPs generated from genotyping-by-sequencing (GBS) methods with five, previously constructed linkage maps, to create a compendium of nearly 69 thousand SNPs mapped with high confidence. We use this compendium to assess a recently available, chromosome-level assembly of the C. gigas genome, mapping SNPs in 275 of 301 contigs and comparing the ordering of these contigs, by linkage, to their assembly by Hi-C sequencing methods. We find that, while 26% of contigs contain chimeric blocks of SNPs, i.e., adjacent SNPs mapping to different linkage groups than the majority of SNPs in their contig, these apparent misassemblies amount to only 0.08% of the genome sequence. Furthermore, nearly 90% of 275 contigs mapped by linkage and sequencing are assembled identically; inconsistencies between the two assemblies for the remaining 10% of contigs appear to result from insufficient linkage information. Thus, our compilation of linkage maps strongly supports this chromosome-level assembly of the oyster genome. Finally, we use this assembly to estimate, for the first time in a Lophotrochozoan, genome-wide recombination rates and causes of variation in this fundamental process.


2016 ◽  
Vol 113 ◽  
pp. 31-38 ◽  
Author(s):  
Perrine Gamain ◽  
Patrice Gonzalez ◽  
Jérôme Cachot ◽  
Patrick Pardon ◽  
Nathalie Tapie ◽  
...  

Aquaculture ◽  
2021 ◽  
pp. 736923
Author(s):  
Roberto Arredondo-Espinoza ◽  
Ana M. Ibarra ◽  
Steven B. Roberts ◽  
Maria Teresa Sicard-Gonzalez ◽  
Cristina Escobedo-Fregoso

Evolution ◽  
1998 ◽  
Vol 52 (2) ◽  
pp. 394 ◽  
Author(s):  
Ximing Guo ◽  
Dennis Hedgecock ◽  
William K. Hershberger ◽  
Kenneth Cooper ◽  
Standish K. Allen

Sign in / Sign up

Export Citation Format

Share Document