scholarly journals THE STRUCTURAL GENE FOR α-MANNOSIDASE-1 IN DICTYOSTELIUM DISCOIDEUM

Genetics ◽  
1976 ◽  
Vol 84 (2) ◽  
pp. 159-174
Author(s):  
S J Free ◽  
R T Schimke ◽  
W F Loomis

ABSTRACT We have isolated 4 independent mutations affecting α-mannosidase-1, a a developmentally regulated activity in Dictyostelium discoideum. Three of these result in a thermolabile α-mannosidase-1 activity. One mutation also affects the substrate affinity (Km) of the activity. In diploids these mutations show a gene dosage effect and are all alleles. The structural gene for α-mannosidase-1, as defined by these mutations, defines a new linkage group, linkage group VI. α-Mannosidase-1 is probably a homopolymer with subunits of 54,000 daltons.

Genetics ◽  
1981 ◽  
Vol 97 (3-4) ◽  
pp. 625-637 ◽  
Author(s):  
James A Birchler

ABSTRACT The levels of alcohol dehydrogenase (ADH) do not exhibit a structural gene-dosage effect in a one to four dosage series of the long arm of chromosome one (1L) (BIRCHLER19 79). This phenomenon, termed dosage compensation, has been studied in more detail. Experiments are described in which individuals aneuploid for shorter segments were examined for the level of ADH in order to characterize the genetic nature of the compensation. The relative ADH expression in segmental trisomics and tetrasomics of region IL 0.72–0.90, which includes the Adh locus, approaches the level expected from a strict gene dosage effect. Region IL 0.20–0.72 produces a negative effect upon ADH in a similar manner to that observed with other enzyme levels when IL as a whole is varied (BIRCHLEF1I9 79). These and other comparisons have led to the concept that the compensation of ADH results from the cancellation of the structural gene effect by the negative aneuploid effect. The example of ADH is discussed as a model for certain other cases of dosage compensation in higher eukaryotes.


1987 ◽  
Vol 116 (3_Suppl) ◽  
pp. S95-S96
Author(s):  
D. VOGLIOLO ◽  
H. WINKING ◽  
R. KNUPPEN

1977 ◽  
Vol 6 (5) ◽  
pp. 529-532 ◽  
Author(s):  
S. JARAMILLO ◽  
G. ANHORN ◽  
F. SCHUNTER ◽  
P. WERNET

1973 ◽  
Vol 83 (2) ◽  
pp. 167-172
Author(s):  
Li-Tsun Chen ◽  
Joseph A. Davidenas ◽  
Roal F. Ruth

Genetics ◽  
1989 ◽  
Vol 122 (1) ◽  
pp. 59-64 ◽  
Author(s):  
E Smith ◽  
A A Gooley ◽  
G C Hudson ◽  
K L Williams

Abstract Electrophoretic variants which arise from amino acid substitutions, leading to charge differences between proteins are ubiquitous and have been used extensively for genetic analysis. Less well documented are polymorphisms in the size of proteins. Here we report that a group of glycoproteins, which share a common carbohydrate epitope, vary in size in different isolates of the cellular slime mould, Dictyostelium discoideum. One of these proteins, PsA, a developmentally regulated prespore-specific surface glycoprotein, has previously been shown to exist in three size forms due to allelic variation at the pspA locus on linkage group I. In this report, a second glycoprotein, PsB, which is also prespore specific but found inside prespore cells, is studied. PsB maps to linkage group II and exhibits at least four different sizes in the isolates examined. We propose that the size polymorphisms are the product of allelic variation at the pspB locus, due to differences in the number of repeat units.


1976 ◽  
Vol 16 (1-5) ◽  
pp. 326-327
Author(s):  
R.E. Magenis ◽  
R.D. Koler ◽  
E. Lovrien ◽  
R.H. Bigley ◽  
M.C. DuVal ◽  
...  

2002 ◽  
Vol 68 (4) ◽  
pp. 342-349
Author(s):  
Pongphen JITAREERAT ◽  
Hiroyuki MATSUMOTO ◽  
Masahiro UMEHARA ◽  
Shinji TSUYUMU

Sign in / Sign up

Export Citation Format

Share Document