surface glycoprotein
Recently Published Documents


TOTAL DOCUMENTS

1703
(FIVE YEARS 288)

H-INDEX

104
(FIVE YEARS 9)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
James Budzak ◽  
Robert Jones ◽  
Christian Tschudi ◽  
Nikolay G. Kolev ◽  
Gloria Rudenko

AbstractA Variant Surface Glycoprotein (VSG) coat protects bloodstream form Trypanosoma brucei. Prodigious amounts of VSG mRNA (~7-10% total) are generated from a single RNA polymerase I (Pol I) transcribed VSG expression site (ES), necessitating extremely high levels of localised splicing. We show that splicing is required for processive ES transcription, and describe novel ES-associated T. brucei nuclear bodies. In bloodstream form trypanosomes, the expression site body (ESB), spliced leader array body (SLAB), NUFIP body and Cajal bodies all frequently associate with the active ES. This assembly of nuclear bodies appears to facilitate the extraordinarily high levels of transcription and splicing at the active ES. In procyclic form trypanosomes, the NUFIP body and SLAB do not appear to interact with the Pol I transcribed procyclin locus. The congregation of a restricted number of nuclear bodies at a single active ES, provides an attractive mechanism for how monoallelic ES transcription is mediated.


Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 60
Author(s):  
Natalia V. Krylova ◽  
Anna O. Kravchenko ◽  
Olga V. Iunikhina ◽  
Anastasia B. Pott ◽  
Galina N. Likhatskaya ◽  
...  

The structural diversity and unique physicochemical properties of sulphated polysaccharides of red algae carrageenans (CRGs), to a great extent, determine the wide range of their antiviral properties. This work aimed to compare the antiviral activities of different structural types of CRGs: against herpes simplex virus type 1 (HSV-1) and enterovirus (ECHO-1). We found that CRGs significantly increased the resistance of Vero cells to virus infection (preventive effect), directly affected virus particles (virucidal effect), inhibited the attachment and penetration of virus to cells, and were more effective against HSV-1. CRG1 showed the highest virucidal effect on HSV-1 particles with a selective index (SI) of 100. CRG2 exhibited the highest antiviral activity by inhibiting HSV-1 and ECHO-1 plaque formation, with a SI of 110 and 59, respectively, when it was added before virus infection. CRG2 also significantly reduced the attachment of HSV-1 and ECHO-1 to cells compared to other CRGs. It was shown by molecular docking that tetrasaccharides—CRGs are able to bind with the HSV-1 surface glycoprotein, gD, to prevent virus–cell interactions. The revealed differences in the effect of CRGs on different stages of the lifecycle of the viruses are apparently related to the structural features of the investigated compounds.


2022 ◽  
Author(s):  
Guy Oldrieve ◽  
Beatrice Malacart ◽  
Javier López-Vidal ◽  
Keith Matthews

The ability of trypanosome parasites to survive and sustain infections is dependent on diverse and intricate immune evasion mechanisms. Pathogenic trypanosomes often have broad host niches that preclude identification of host specific adaptations. In contrast, some non-pathogenic species of the genus Trypanosoma have highly specific hosts and vectors. Trypanosoma theileri, a non-pathogenic parasite of bovines, has a predicted surface protein architecture that likely aids survival in its mammalian host, distinct from the dominant variant surface glycoprotein coat of pathogenic African trypanosomes. In both species, their surface proteins are encoded by genes which account for ~10% of their genome. A non-pathogenic parasite of sheep, Trypanosoma melophagium, is transmitted by the sheep ked and is closely related to T. theileri. To explore host and vector specificity between these closely related species, we sequenced the T. melophagium genome and transcriptome and an annotated draft genome was assembled. T. melophagium was compared to 43 kinetoplastid genomes, including T. theileri. T. melophagium and T. theileri have an AT biased genome, the greatest bias of publicly available trypanosomatids. This trend may result from selection acting to decrease the genome nucleotide cost. The T. melophagium genome is 6.3Mb smaller than T. theileri and large families of proteins, characteristic of the predicted surface of T. theileri, were found to be absent or greatly reduced in T. melophagium. Instead, T. melophagium has modestly expanded protein families associated with the avoidance of complement-mediated lysis. The genome of T. melophagium contains core genes required for development, glycolysis, RNA interference, and meiotic exchange, each being shared with T. theileri. Comparisons between T. melophagium and T. theileri provide insight into the specific adaptations of these related trypanosomatids to their distinct mammalian hosts and arthropod vectors.


2021 ◽  
Author(s):  
Swathika RS ◽  
Vimal S ◽  
Bhagya Shree E ◽  
Elakkiya Elumalai ◽  
Krishna Kant Gupta

The SARS-CoV-2 virus has caused the severe pandemic, COVID19 and since then its been critical to produce a potent vaccine to prevent the quick transmission and also to avoid alarming deaths. Among all type of vaccines peptide based epitope design tend to outshine with respect to low cost production and more efficacy. Therefore, we started with obtaining the necessary protein sequences from NCBI database of SARS-CoV-2 virus and filtered with respect to antigenicity, virulency, pathogenicity and non- homologous nature with human proteome using different available online tools and servers. The promising proteins was checked for containing common B and T- cell epitopes. The structure for these proteins were modeled from I-TASSER server followed by its refinement and validation. The predicted common epitopes were mapped on modeled structures of proteins by using Pepitope server. The surface exposed epitopes were docked with the most common allele DRB1*0101 using the GalaxyPepDock server. The epitopes, ELEGIQYGRS from Leader protein (NSP1), YGPFVDRQTA from 3c-like proteinase (nsp5), DLKWARFPKS from NSP9 and YQDVNCTEVP from Surface glycoprotein (spike protein) are the epitopes which has more hydrogen bonds. Hence these four epitopes could be considered as a more promising epitopes and these epitopes can be used for future studies.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2529
Author(s):  
Monika Olech ◽  
Jacek Kuźmak

Small ruminant lentiviruses (SRLVs) are a group of highly divergent viruses responsible for global infection in sheep and goats. In a previous study we showed that SRLV strains found in mixed flocks in Poland belonged to subtype A13 and A18, but this study was restricted only to the few flocks from Małopolska region. The present work aimed at extending earlier findings with the analysis of SRLVs in mixed flocks including larger numbers of animals and flocks from different part of Poland. On the basis of gag and env sequences, Polish SRLVs were assigned to the subtypes B2, A5, A12, and A17. Furthermore, the existence of a new subtypes, tentatively designed as A23 and A24, were described for the first time. Subtypes A5 and A17 were only found in goats, subtype A24 has been detected only in sheep while subtypes A12, A23, and B2 have been found in both sheep and goats. Co-infection with strains belonging to different subtypes was evidenced in three sheep and two goats originating from two flocks. Furthermore, three putative recombination events were identified within gag and env SRLVs sequences derived from three sheep. Amino acid (aa) sequences of immunodominant epitopes in CA protein were well conserved while Major Homology Region (MHR) had more alteration showing unique mutations in sequences of subtypes A5 and A17. In contrast, aa sequences of surface glycoprotein exhibited higher variability confirming type-specific variation in the SU5 epitope. The number of potential N-linked glycosylation sites (PNGS) ranged from 3 to 6 in respective sequences and were located in different positions. The analysis of LTR sequences revealed that sequences corresponding to the TATA box, AP-4, AML-vis, and polyadenylation signal (poly A) were quite conserved, while considerable alteration was observed in AP-1 sites. Interestingly, our results revealed that all sequences belonging to subtype A17 had unique substitution T to A in the fifth position of TATA box and did not have a 11 nt deletion in the R region which was noted in other sequences from Poland. These data revealed a complex picture of SRLVs population with ovine and caprine strains belonging to group A and B. We present strong and multiple evidence of dually infected sheep and goats in mixed flocks and present evidence that these viruses can recombine in vivo.


2021 ◽  
Vol 12 ◽  
Author(s):  
Theodore J. Kottom ◽  
Eva M. Carmona ◽  
Andrew H. Limper

Pneumocystis jirovecii is one of the most common fungal pathogens in immunocompromised individuals. Pneumocystis jirovecii pneumonia (PJP) causes a significant host immune response that is driven greatly by the organism’s cell wall components including β-glucans and major surface glycoprotein (Msg). These ligands interact with a number of C-type lectin receptors (CLRs) leading to downstream activation of proinflammatory signaling pathways. This minireview provides a brief overview summarizing known CLR/Pneumocystis interactions.


2021 ◽  
Author(s):  
Nehir Ozdemir Ozgenturk ◽  
Emre Aktaş

ACE-2 receptor plays a vital role not only in the SARS-CoV-induced epidemic but also in some diseases. Studies have been carried out on the interactions of ACE-2- SARS-CoV proteins. However, comprehensive research has not been conducted on ACE2 protein by using bioinformatic tools. The present study especially two places, G104 and L108 points, which are effective in protecting the structure of the ACE-2 protein, play a critical role in the biological functioning of this protein, and play an essential role in determining the chemical-physical properties of this protein, and play a crucial role for ACE-2 protein-SARS CoV surface glycoprotein, were determined. It was also found that the G104 and L108 regions were more prone to possible mutations or deletions than the other ACE-2 protein regions. Moreover, it was determined that all possible mutations or deletions in these regions affect the chemical-physical properties, biological functions, and structure of the ACE-2 protein. Having a negative GRAVY value, one transmembrane helix, a significant molecular weight, a long-estimated half-life as well as most having unstable are results of G104 and L108 points mutations or deletions. Finally, it was determined that LQQNGSSVLS, which belong to the ACE-2 protein, may play an active role in binding the spike protein of SARS-CoV. All possible docking score results were estimated. It is thought that this study will bring a different perspective to ACE-2 _SARS-CoV interaction and other diseases in which ACE-2 plays an important role and will also be an essential resource for studies on ACE-2 protein.


Author(s):  
Afshin Abdi Ghavidel ◽  
Mahbubeh Rojhannezhad ◽  
Bahram Kazemi ◽  
Mojgan Bandehpour

The widespread outbreak of coronavirus disease 2019 in late 2019 caused many people worldwide to die or suffer from certain clinical complications even after the recovery. The virus has many social and economic adverse effects. Studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have specified that spike, surface glycoprotein antigen, is considered as a major target to stimulate the immune system. This glycoprotein binds to the angiotensin-converting enzyme 2 on the surface of human cells especially lung epithelial cells and facilitates the virus entry. Therefore, the immune response stimulated by vaccination targeting this antigen may cause immunity against the whole virus. Currently, many companies are working on SARS-CoV-2 vaccines. They include ‘traditional’ vaccines like attenuated or inactivated virus platforms as well as the brand-new generations of vaccines such as viral vector-based, subunit, nucleic acid-based, and virus-like particle vaccines. Certainly, each vaccine platform presents several advantages and disadvantages affecting its efficacy and safety which is the main topic of this paper.


2021 ◽  
Vol 70 (12) ◽  
Author(s):  
Theodore J. Kottom ◽  
Eva M. Carmona ◽  
Kyle Schaefbauer ◽  
Andrew H. Limper

Introduction. Pathogen-associated molecular patterns’ (PAMPs) are microbial signatures that are recognized by host myeloid C-type lectin receptors (CLRs). These CLRs interact with micro-organisms via their carbohydrate recognition domains (CRDs) and engage signalling pathways within the cell resulting in pro-inflammatory and microbicidal responses. Gap statement. In this article, we extend our laboratory study of additional CLRs that recognize fungal ligands against Pneumocystis murina and Pneumocystis carinii and their purified major surface glycoproteins (Msgs). Aim. To study the potential of newly synthesized hFc-CLR fusions on binding to Pneumocystis and its Msg. Methods. A library of new synthesized hFc-CLR fusions was screened against Pneumocystis murina and Pneumocystis carinii organisms and their purified major surface glycoproteins (Msgs) found on the respective fungi via modified ELISA. Immunofluorescence assay (IFA) was implemented and quantified to verify results. mRNA expression analysis by quantitative PCR (q-PCR) was employed to detect respective CLRs found to bind fungal organisms in the ELISA and determine their expression levels in the mouse immunosuppressed Pneumocystis pneumonia (PCP) model. Results. We detected a number of the CLR hFc-fusions displayed significant binding with P. murina and P. carinii organisms, and similarly to their respective Msgs. Significant organism and Msg binding was observed for CLR members C-type lectin domain family 12 member A (CLEC12A), Langerin, macrophage galactose-type lectin-1 (MGL-1), and specific intracellular adhesion molecule-3 grabbing non-integrin homologue-related 3 (SIGNR3). Immunofluorescence assay (IFA) with the respective CLR hFc-fusions against whole P. murina life forms corroborated these findings. Lastly, we surveyed the mRNA expression profiles of the respective CLRs tested above in the mouse immunosuppressed Pneumocystis pneumonia (PCP) model and determined that macrophage galactose type C-type lectin (Mgl-1), implicated in recognizing terminal N-acetylgalactosamine (GalNAc) found in the glycoproteins of microbial pathogens was significantly up-regulated during infection. Conclusion. The data herein add to the growing list of CLRs recognizing Pneumocystis and provide insights for further study of organism/host immune cell interactions.


2021 ◽  
Vol 08 ◽  
Author(s):  
Deepa R. Bandi ◽  
SubbaRao V. Tulimilli ◽  
Durai Ananda Kumar T. ◽  
Chandi Kumari Chitturi ◽  
Anjalidevi S. Bettadapura ◽  
...  

Background: Despite various efforts in preventing and treating SARS-CoV-2 infections; transmission and mortality have been increasing at alarming rates globally. Since its first occurrence in Wuhan, China, in December 2019, the number of cases and deaths due to SARS-CoV-2 infection continues to increase across 220 countries. Currently, there are about 228 million cases and 4.6 million deaths recorded globally. Although several vaccines/drugs have been reported to prevent or treat SARS-CoV-2, their efficacy to protect against emerging variants and duration of protection are not fully known. Hence, more emphasis is given to repurpose the existing pharmacological agents to manage the infected individuals. One such agent is hydroxychloroquine (HCQ), which is a more soluble derivative of antimalarial drug chloroquine. HCQ has been tested in clinical trials to mitigate SARS-CoV-2 infection-induced complications while reducing the time to clinical recovery (TTCR). However, several concerns and questions about the utility and efficacy of HCQ for treating SARS-CoV-2 infected individuals still persist. Identifying key proteins regulated by HCQ is likely to provide vital clues required to address these concerns. Objective: The objective of this study is to identify the ability of HCQ for binding to the most widely studied molecular targets of SARS-CoV-2 viz., spike glycoprotein (S protein), and main protease (Mpro, also referred as chymotrypsin like protease) using molecular docking approaches and correlate the results with reported mechanisms of actions of HCQ. Methods: X-ray crystallographic structures of spike glycoprotein and main protease of SARS-CoV-2 were retrieved from Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB). The structure of Hydroxychloroquine was retrieved from the PubChem compound database. The binding interactions of the HCQ with target proteins were predicted using C-Docker algorithm, and visualized using Discovery studio visualizer. Results: Data from molecular docking studies showed very strong binding of HCQ to the main protease compared to spike glycoprotein. Conclusion: The antiviral activity of HCQ is attributed to its ability to bind to the main protease compared to surface glycoprotein. Therefore, future studies should focus more on developing a combination agent/strategy for targeting surface glycoprotein and main protease together.


Sign in / Sign up

Export Citation Format

Share Document