Post-critical SsPmp and its applications to virtual deep seismic sounding (VDSS)—3: back-projection imaging of the crust–mantle boundary in a heterogeneous lithosphere, theory and application

2020 ◽  
Vol 223 (3) ◽  
pp. 2166-2187
Author(s):  
Tianze Liu ◽  
Simon L Klemperer ◽  
Chunquan Yu ◽  
Jieyuan Ning

SUMMARY Virtual deep seismic sounding (VDSS) uses the arrival time of post-critical SsPmp relative to the direct S wave to infer Moho depth at the Pmp reflection point. Due to the large offset between the virtual source and the receiver, SsPmp is more sensitive to lateral variations of structures than near-vertical phases such as Ps, which is used to construct conventional P receiver functions. However, the way post-critical SsPmp is affected by lateral variations in lithospheric structure is not well understood, and previous studies largely assumed a 1-D structure when analysing SsPmp waveforms. Here we present synthetic tests with various 2-D models to show that lateral variations in lithospheric structures, from the lithosphere–asthenosphere boundary (LAB) to sedimentary basins, profoundly affect traveltime, phase and amplitude of post-critical SsPmp, and that a 1-D approximation is usually inappropriate when analysing 2-D data. Despite these strong effects we show, with synthetic examples and the ChinArray data from the Ordos Block in northern China, that a simple ray-theory-based back-projection method can retrieve the geometry of the crust–mantle boundary (CMB) given array observations in cases with moderate lateral variations in the CMB and/or the LAB. The success of our back-projection method indicates that ray-theory approximations are sufficient in modelling SsPmp traveltimes in the presence of moderate lateral heterogeneity. In contrast, we show that the ray theory is generally insufficient in modelling SsPmp phase shifts in a strongly heterogeneous lithosphere due to non-planar downgoing P waves incident at the CMB. Nonetheless, our results demonstrate the feasibility of direct imaging of the CMB with post-critical SsPmp even in the presence of 2-D variations of lithospheric structure.

2019 ◽  
Vol 219 (2) ◽  
pp. 1334-1347 ◽  
Author(s):  
Tianze Liu ◽  
Simon L Klemperer ◽  
Gabriel Ferragut ◽  
Chunquan Yu

SUMMARY Virtual Deep Seismic Sounding (VDSS) has emerged as a novel method to image the crust–mantle boundary (CMB) and potentially other lithospheric boundaries. In Part 1, we showed that the arrival time and waveform of post-critical SsPmp, the post-critical reflection phase at the CMB used in VDSS, is sensitive to several different attributes of the crust and upper mantle. Here, we synthesize our methodology of deriving Moho depth, average crustal Vp and uppermost-mantle Vp from single-station observations of post-critical SsPmp under a 1-D assumption. We first verify our method with synthetics and then substantiate it with a case study using the Yellowknife and POLARIS arrays in the Slave Craton, Canada. We show good agreement of crustal and upper-mantle properties derived with VDSS with those given by previous active-source experiments and our own P receiver functions (PRF) in our study area. Finally, we propose a PRF-VDSS joint analysis method to constrain average crustal Vp/Vs ratio and composition. Our PRF-VDSS joint analysis shows that the southwest Slave Craton has an intermediate crustal composition, most consistent with a Mesoarchean age.


Sign in / Sign up

Export Citation Format

Share Document