coda q
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 16)

H-INDEX

19
(FIVE YEARS 1)

2022 ◽  
Vol 15 (2) ◽  
Author(s):  
Yueling Jing ◽  
Yuxuan Zhang ◽  
Lihao He ◽  
Minghui Li ◽  
Siyuan Zheng
Keyword(s):  
S Wave ◽  

2020 ◽  
Vol 791 ◽  
pp. 228564
Author(s):  
Dina Vales ◽  
Jens Havskov ◽  
Luís Matias ◽  
Sónia Silva

Whereas the quality factor Q is one of the basic parameters required in seismic hazard estimation, no systematic studies of seismic attenuation factors have been carried out in the central part of the East European Platform due to the lack of a dense seismic network and a small number of regional earthquakes. The main part of the events, recorded by the small aperture array “Mikhnevo” 80 km to the south of Moscow, consists of industrial explosions of different magnitude. The idea of the paper is to apply conventional seismic methods to the analysis of seismic waveforms of industrial explosions. The paper focuses on the Lg coda of the quarry blast in “Mikhailovsky” quarry 300 km from the array. Vertical components of the short-period and broad band records of the sensors positioned in the well at the depth 20 m are processed according to the SSR algorithm, suggested by Xie and Nuttli, 1988, and extensively used by Mitchell et al in different regions of the world. The advantages of the method imply exclusion of the source and site characteristics by taking spectral ratios of the successive time windows of the coda. Compared to the earthquake waveforms, the Lg coda of explosions is shorter, less regular and contains higher frequencies. The length of coda varies according to the noise level. We selected 14 events from the same quarry in different years, which demonstrate remarkable stability of the waveforms. All the events were processed individually to obtain the frequency dependence of Q in the form Q(f)=Q0 f , where Q0 is the Q factor at the frequency 1 Hz and  is the power. To produce stable estimates of Q0 and  individual values were averaged for frequency bands: 2-6 Hz, 2-7 Hz, 3-6 Hz, 3-7 Hz for different length of coda. The preferable frequency range for Lg coda Q studies of quarry blasts is suggested as 3-6 Hz, which avoids instability of coda in 1-3 Hz interval, presumably caused by local site effect, connected with the 3 km thick sedimentary layer. The Q estimate of Q0=584±89, =0.41±0.06 proves considerable heterogeneity of the upper crust in the region. Speaking about Q factor as an indicator of the tectonic activity, the studied area can be related to a region of moderate activity.


2019 ◽  
Vol 19 (12) ◽  
pp. 2701-2714 ◽  
Author(s):  
Snježana Markušić ◽  
Davor Stanko ◽  
Tvrtko Korbar ◽  
Ivica Sović

Abstract. Seismically induced ground motion at a site is generally influenced by the seismic source, the propagation path and the local site conditions. Over the last several decades, researchers have consistently asserted that for near-site attenuation, the spectral parameter κ is subject primarily to the site conditions. In this research, we estimated the parameter κ based on the acceleration amplitude spectrum of shear waves from local earthquakes recorded by seismological stations situated in the western part of Croatia from the slope of the high-frequency part. The spatial distribution of κ values is comparable with seismological, geophysical and geological features, with the published coda-Q values for each station as well as with the isoseismal maps for selected stronger earthquakes in the study area. The complex pattern of longitudinal and transversal major late-orogenic fault zones dissecting early-orogenic thin-skinned tectonic cover in the Kvarner area and the shallow depth to the Moho (Mohorovičić discontinuity) in the Adriatic foreland (southern Istria) are probably responsible for a significant part of wave attenuation and for the anisotropy of attenuation. Regional near-surface attenuation distribution and modelled macroseismic fields point to the conclusion that attenuation properties of rocks in the northwestern External Dinarides are far from isotropic, and the most likely anisotropy sources are the preferential orientations of cracks and fractures under the local tectonic stress field, trapping of waves along major faults (waveguides), and/or attenuation within the fault zones. These results are important for gaining further insight into the attenuation of near-surface crust layers in the northwestern External Dinarides and the associated Adriatic foreland as well as in similar geotectonic settings.


2019 ◽  
Vol 297 ◽  
pp. 106313 ◽  
Author(s):  
Marilena Filippucci ◽  
Edoardo Del Pezzo ◽  
Salvatore de Lorenzo ◽  
Andrea Tallarico

2019 ◽  
Vol 220 (1) ◽  
pp. 202-217
Author(s):  
D Soergel ◽  
H A Pedersen ◽  
L Stehly ◽  
L Margerin ◽  
A Paul ◽  
...  

SUMMARY Coda-Q is used to estimate the attenuation and scattering properties of the Earth. So far focus has been on earthquake data at frequencies above 1 Hz, as the high noise level in the first and second microseismic peak, and possibly lower scattering coefficient, hinder stable measurements at lower frequencies. In this work, we measure and map coda-Q in the period bands 2.5–5 s, 5–10 s and 10–20 s in the greater Alpine region using noise cross-correlations between station pairs, based on data from permanent seismic stations and from the temporary AlpArray experiment. The observed coda-Q for short interstation distances is independent of azimuth so there is no indication of influence of the directivity of the incoming noise field on our measurements. In the 2.5–5 s and 5–10 s period bands, our measurements are self-consistent, and we observe stable geographic patterns of low and high coda-Q in the period bands 2.5–5 s and 5–10 s. In the period band 10–20 s, the dispersion of our measurements increases and geographic patterns become speculative. The coda-Q maps show that major features are observed with high resolution, with a very good geographical resolution of for example low coda-Q in the Po Plain. There is a sharp contrast between the Po Plain and the Alps and Apennines where coda-Q is high, with the exception a small area in the Swiss Alps which may be contaminated by the low coda-Q of the Po Plain. The coda of the correlations is too short to make independent measurements at different times within the coda, so we cannot distinguish between intrinsic and scattering Q. Measurements on more severely selected data sets and longer time-series result in identical geographical patterns but lower numerical values. Therefore, high coda-Q values may be overestimated, but the geographic distribution between high and low coda-Q areas is respected. Our results demonstrate that noise correlations are a promising tool for extending coda-Q measurements to frequencies lower than those analysed with earthquake data.


2019 ◽  
Vol 128 (5) ◽  
Author(s):  
Koushik Biswas ◽  
Prantik Mandal ◽  
Prosanta Kumar Khan
Keyword(s):  
Coda Q ◽  

Sign in / Sign up

Export Citation Format

Share Document