lateral resolution
Recently Published Documents


TOTAL DOCUMENTS

590
(FIVE YEARS 97)

H-INDEX

41
(FIVE YEARS 4)

2022 ◽  
Vol 152 ◽  
pp. 106949
Author(s):  
Yifeng Sun ◽  
Zhishan Gao ◽  
Jianqiu Ma ◽  
Juntao Zhou ◽  
Pengfei Xie ◽  
...  

Author(s):  
Weiran Pang ◽  
Yongjun Wang ◽  
Lili Guo ◽  
Bo Wang ◽  
Puxiang Lai ◽  
...  

Existing acoustic-resolution photoacoustic/ultrasonic endoscopy (PA/USE) generally employs a point-focused transducer for ultrasound detection, which is only sensitive in its focal region, thus the lateral resolution and sensitivity drop dramatically when the targets move far from its focus. Even if a dynamic focusing algorithm is applied, the sensitivity out of the transducer focus is still much lower than that in the focus in ultrasonic imaging mode. In this work, we propose an acoustic-resolution PA/USE with a line-focused transducer to realize automatic focusing for the first time. In comparison to a point-focused transducer, the line-focused transducer emits a more uniform sound field, causing the original signal intensity and signal-to-noise ratio (SNR) of the front and rear targets to be closer in the radial direction, which is beneficial for improving target signal uniformity in ultrasonic imaging. Simultaneously, we improved the resolution of the defocus area by modifying a prior work of back-projection (BP) reconstruction algorithm typically used in point-focused transducer based PAE and applying it to line-focused PA/USE. This combined approach may significantly enhance the depth of field of ultrasonic imaging and the resolution of the defocus zone in PA/US imaging, compared to the conventional method. Sufficient numerical simulations and phantom experiments were performed to verify this method. The results show that our method can effectively improve the lateral resolution in the image’s defocused region to achieve automatic focusing and perfectly solve the defect of the target signal difference in the far-focus region in ultrasonic imaging, while also enhancing the image SNR and contrast. The proposed method in this paper lays foundations for the realization of photoacoustic/ultrasonic combined endoscopy with enhanced lateral resolution and depth of field, which can potentially benefit a many of biomedical applications.


2021 ◽  
Author(s):  
Pavel Shekhtmeyster ◽  
Daniela Duarte ◽  
Erin M. Carey ◽  
Alexander Ngo ◽  
Grace Gao ◽  
...  

Spinal cord circuits play crucial roles in transmitting and gating cutaneous somatosensory modalities, such as pain, but the underlying activity patterns within and across spinal segments in behaving mice have remained elusive. To enable such measurements, we developed a wearable widefield macroscope with a 7.9 mm2 field of view, subcellular lateral resolution, 2.7 mm working distance, and <10 g overall weight. We show that highly localized painful mechanical stimuli evoke widespread, coordinated astrocyte excitation across multiple spinal segments.


2021 ◽  
Author(s):  
Jan Christoph Thiele ◽  
Marvin Jungblut ◽  
Dominic A. Helmerich ◽  
Roman Tsukanov ◽  
Anna Chizhik ◽  
...  

Over the last two decades, super-resolution microscopy has seen a tremendous development in speed and resolution, but for most of its methods, there exists a remarkable gap between lateral and axial resolution. Similar to conventional optical microscopy, the axial resolution is by a factor three to five worse than the lateral resolution. One recently developed method to close this gap is metal-induced energy transfer (MIET) imaging which achieves an axial resolution down to nanometers. It exploits the distance dependent quenching of fluorescence when a fluorescent molecule is brought close to a metal surface. In the present manuscript, we combine the extreme axial resolution of MIET imaging with the extraordinary lateral resolution of single-molecule localization microscopy, in particular with direct stochastic optical reconstruction microscopy (dSTORM). This combination allows us to achieve isotropic three-dimensional super-resolution imaging of sub-cellular structures. Moreover, we employed spectral demixing for implementing dual-color MIET-dSTORM that allows us to image and co-localize, in three dimensions, two different cellular structures simultaneously.


2021 ◽  
Author(s):  
Moritz Spath ◽  
Martin Hohmann ◽  
Florian Stelzle ◽  
Florian Klampfl

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sergio Bonaque-González ◽  
Juan M. Trujillo-Sevilla ◽  
Miriam Velasco-Ocaña ◽  
Óscar Casanova-González ◽  
Miguel Sicilia-Cabrera ◽  
...  

AbstractOcular optics is normally estimated based on up to 2,600 measurement points within the pupil of the eye, which implies a lateral resolution of approximately 175 µm for a 9 mm pupil diameter. This is because information below this resolution is not thought to be relevant or even possible to obtain with current measurement systems. In this work, we characterize the in vivo ocular optics of the human eye with a lateral resolution of 8.6 µm, which implies roughly 1 million measurement points for a pupil diameter of 9 mm. The results suggest that the normal human eye presents a series of hitherto unknown optical patterns with amplitudes between 200 and 300 nm and is made up of a series of in-phase peaks and valleys. If the results are analysed at only high lateral frequencies, the human eye is also found to contain a whole range of new information. This discovery could have a great impact on the way we understand some fundamental mechanisms of human vision and could be of outstanding utility in certain fields of ophthalmology.


2021 ◽  
Vol 143 ◽  
pp. 107104
Author(s):  
Chuankai Yang ◽  
Guohao Zheng ◽  
Shicai Deng

Sign in / Sign up

Export Citation Format

Share Document