back projection
Recently Published Documents


TOTAL DOCUMENTS

1168
(FIVE YEARS 280)

H-INDEX

52
(FIVE YEARS 6)

2021 ◽  
Vol 12 (1) ◽  
pp. 404
Author(s):  
Dominik F. Bauer ◽  
Constantin Ulrich ◽  
Tom Russ ◽  
Alena-Kathrin Golla ◽  
Lothar R. Schad ◽  
...  

Metal artifacts are common in CT-guided interventions due to the presence of metallic instruments. These artifacts often obscure clinically relevant structures, which can complicate the intervention. In this work, we present a deep learning CT reconstruction called iCTU-Net for the reduction of metal artifacts. The network emulates the filtering and back projection steps of the classical filtered back projection (FBP). A U-Net is used as post-processing to refine the back projected image. The reconstruction is trained end-to-end, i.e., the inputs of the iCTU-Net are sinograms and the outputs are reconstructed images. The network does not require a predefined back projection operator or the exact X-ray beam geometry. Supervised training is performed on simulated interventional data of the abdomen. For projection data exhibiting severe artifacts, the iCTU-Net achieved reconstructions with SSIM = 0.970±0.009 and PSNR = 40.7±1.6. The best reference method, an image based post-processing network, only achieved SSIM = 0.944±0.024 and PSNR = 39.8±1.9. Since the whole reconstruction process is learned, the network was able to fully utilize the raw data, which benefited from the removal of metal artifacts. The proposed method was the only studied method that could eliminate the metal streak artifacts.


Author(s):  
Mohammed Ikrom Asysyakuur ◽  
Denden Mohammad Ariffin ◽  
Arief Suryadi Satyawan ◽  
Ni Nyoman Ayu Marlina ◽  
Nafisun Nufus ◽  
...  

Untuk memetakan suatu objek berupa kontur suatu daerah akan terasa sulit jikamenggunakan sistem sensor pasif seperti kamera karena keterbatasannya untuk menembus awan, kabut dan cuaca yang tidak menentu. Oleh sebab itu diperlukannya teknologi yang lebih baik untuk dapat memetakan suatu objek dari atas permukaan bumi atau udara. Synthetic Aperture Radar (SAR) adalah teknik pemetaan dengan menggunakan radar untuk menghasilkan peta kontur bumi dengan resolusi tinggi, atau menggambarkan suatu objek serta menyajikan informasi dalam bentuk citra atau gambar. SAR dapat bekerja dalam kondisi cuaca apapun, baik dalam keadaan hujan, salju atau bahkan kabut sekalipun. Kemampuan SAR lainnya adalah untuk dapat mendeteksi objek dengan tingkat keakuratanyang cukup baik. Beradasarkan hal tersebut di atas, penelitian dan pengembangan teknologi SAR sangat diperlukan. Pada penelitian ini studi awal mengenai teknologi SAR telah dilakukan. Penelitian tersebut dimaksudkan untuk dapat melengkapi kemampuan drone atau unmanned aerial vehicle (UAV) baik untuk pencitraan kontur bumi maupun aktifitas terkait society 5.0. Sehingga aplikasinya dapat digunakan untuk keperluan pertanian modern, kehutanan, kelautan, dan kegiatan pengamatan perbatasan. Tujuannya adalah untuk mensimulasikan pendeteksian objek yang berada di permukaan tanah. Terdapat dua metoda pendeteksian objek berbasis SAR yang disimulasikan, yaitu Range Migration Algoritma dan Back Projection Algoritma. Simulasi ini dibangun dengan menggunakan komputer dengan prosesor AMD A8, memori 8 GB dan softperaware MATLAB 2019. Hasil simulasi memperlihatkan bahwa disain system untuk kedua algoritman tersebut dapat bekerja baik pada frekuensi 4 GHz dengan range resolusi 3m. Citra yang ditampilkan pada simulasi ini dalam bentuk 2-D. Sedangkan waktu pemrosesan rata-rata dari ke dua algoritma tersebut untuk dapat melakukan pendeteksian objek adalah 103.2 detik.


Author(s):  
J. Abel van Stiphout ◽  
Jan Driessen ◽  
Lennart R. Koetzier ◽  
Lara B. Ruules ◽  
Martin J. Willemink ◽  
...  

Abstract Objective To determine the difference in CT values and image quality of abdominal CT images reconstructed by filtered back-projection (FBP), hybrid iterative reconstruction (IR), and deep learning reconstruction (DLR). Methods PubMed and Embase were systematically searched for articles regarding CT densitometry in the abdomen and the image reconstruction techniques FBP, hybrid IR, and DLR. Mean differences in CT values between reconstruction techniques were analyzed. A comparison between signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of FBP, hybrid IR, and DLR was made. A comparison of diagnostic confidence between hybrid IR and DLR was made. Results Sixteen articles were included, six being suitable for meta-analysis. In the liver, the mean difference between hybrid IR and DLR was − 0.633 HU (p = 0.483, SD ± 0.902 HU). In the spleen, the mean difference between hybrid IR and DLR was − 0.099 HU (p = 0.925, SD ± 1.061 HU). In the pancreas, the mean difference between hybrid IR and DLR was − 1.372 HU (p = 0.353, SD ± 1.476 HU). In 14 articles, CNR was described. In all cases, DLR showed a significantly higher CNR. In 9 articles, SNR was described. In all cases but one, DLR showed a significantly higher SNR. In all cases, DLR showed a significantly higher diagnostic confidence. Conclusions There were no significant differences in CT values reconstructed by FBP, hybrid IR, and DLR in abdominal organs. This shows that these reconstruction techniques are consistent in reconstructing CT values. DLR images showed a significantly higher SNR and CNR, compared to FBP and hybrid IR. Key Points CT values of abdominal CT images are similar between deep learning reconstruction (DLR), filtered back-projection (FBP), and hybrid iterative reconstruction (IR). DLR results in improved image quality in terms of SNR and CNR compared to FBP and hybrid IR images. DLR can thus be safely implemented in the clinical setting resulting in improved image quality without affecting CT values.


Author(s):  
Genwei Ma ◽  
Xing Zhao ◽  
Yining Zhu ◽  
Huitao Zhang

Abstract To solve the problem of learning based computed tomography (CT) reconstruction, several reconstruction networks were invented. However, applying neural network to tomographic reconstruction still remains challenging due to unacceptable memory space requirement. In this study, we presents a novel lightweight block reconstruction network (LBRN), which transforms the reconstruction operator into a deep neural network by unrolling the filter back-projection (FBP) method. Specifically, the proposed network contains two main modules, which, respectively, correspond to the filter and back-projection of FBP method. The first module of LBRN decouples the relationship of Radon transform between the reconstructed image and the projection data. Therefore, the following module, block back-projection module, can use the block reconstruction strategy. Due to each image block is only connected with part filtered projection data, the network structure is greatly simplified and the parameters of the whole network is dramatically reduced. Moreover, this approach is trained end-to-end, working directly from raw projection data and does not depend on any initial images. Five reconstruction experiments are conducted to evaluate the performance of the proposed LBRN: full angle, low-dose CT, region of interest (ROI), metal artifacts reduction and real data experiment. The results of the experiments show that the LBRN can be effectively introduced into the reconstruction process and has outstanding advantages in terms of different reconstruction problems.


2021 ◽  
Vol 118 (50) ◽  
pp. e2108738118
Author(s):  
Matthew Croxford ◽  
Michael Elbaum ◽  
Muthuvel Arigovindan ◽  
Zvi Kam ◽  
David Agard ◽  
...  

Cryo-electron tomography (cryo-ET) allows for the high-resolution visualization of biological macromolecules. However, the technique is limited by a low signal-to-noise ratio (SNR) and variance in contrast at different frequencies, as well as reduced Z resolution. Here, we applied entropy-regularized deconvolution (ER-DC) to cryo-ET data generated from transmission electron microscopy (TEM) and reconstructed using weighted back projection (WBP). We applied deconvolution to several in situ cryo-ET datasets and assessed the results by Fourier analysis and subtomogram analysis (STA).


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8134
Author(s):  
Min Yao ◽  
Guangdong Luo ◽  
Min Zhao ◽  
Ruipeng Guo ◽  
Jian Liu

Only a few effective methods can detect internal defects and monitor the internal state of complex structural parts. On the basis of the principle of PET (positron emission computed tomography), a new measurement method, using γ photon to detect defects of an inner surface, is proposed. This method has the characteristics of strong penetration, anti-corrosion and anti-interference. With the aim of improving detection accuracy and imaging speed, this study also proposes image reconstruction algorithms, combining the classic FBP (filtered back projection) with MLEM (maximum likelihood expectation Maximization) algorithm. The proposed scheme can reduce the number of iterations required, when imaging, to achieve the same image quality. According to the operational demands of FPGAs (field-programmable gate array), a BPML (back projection maximum likelihood) algorithm is adapted to the structural characteristics of an FPGA, which makes it feasible to test the proposed algorithms therein. Furthermore, edge detection and defect recognition are conducted after reconstructing the inner image. The effectiveness and superiority of the algorithm are verified, and the performance of the FPGA is evaluated by the experiments.


2021 ◽  
Vol 11 (22) ◽  
pp. 10715
Author(s):  
Marco Esposito ◽  
Livia Marrazzo ◽  
Eleonora Vanzi ◽  
Serenella Russo ◽  
Stefania Pallotta ◽  
...  

The aim of this study was to develop and apply an evaluation method for assessing the accuracy of a novel 3D EPID back-projection algorithm for in vivo dosimetry. The novel algorithm of Dosimetry Check (DC) 5.8 was evaluated. A slab phantom homogeneously filled, or with air and bone inserts, was used for fluence reconstruction of different squared fields. VMAT plans in different anatomical sites were delivered on an anthropomorphic phantom. Dose distributions were measured with radiochromic films. The 2D Gamma Agreement Index (GAI) between the DC and the film dose distributions (3%, 3 mm) was computed for assessing the accuracy of the algorithm. GAIs between films and TPS and between DC and TPS were also computed. The fluence reconstruction accuracy was within 2% for all squared fields in the three slabs’ configurations. The GAI between the DC and the film was 92.7% in the prostate, 92.9% in the lung, 96.6% in the head and the neck, and 94.6% in the brain. An evaluation method for assessing the accuracy of a novel EPID algorithm was developed. The DC algorithm was shown to be able to accurately reconstruct doses in all anatomic sites, including the lung. The methodology described in the present study can be applied to any EPID back-projection in vivo algorithm.


Sign in / Sign up

Export Citation Format

Share Document