Frequency-Domain Multi-Stage Soft Interference Cancellation for DS-CDMA Uplink Signal Transmission

2007 ◽  
Vol E90-B (5) ◽  
pp. 1152-1161 ◽  
Author(s):  
K. ISHIHARA ◽  
K. TAKEDA ◽  
F. ADACHI
Author(s):  
Laura Junge ◽  
Graham Ashcroft ◽  
Peter Jeschke ◽  
Christian Frey

Due to the relative motion between adjacent blade rows the aerodynamic flow fields within turbomachinery are normally dominated by deterministic, periodic phenomena. In the numerical simulation of such unsteady flows (nonlinear) frequency-domain methods are therefore attractive as they are capable of fully exploiting the given spatial and temporal periodicity, as well as capturing or modelling flow nonlinearity. Central to the efficiency and accuracy of such frequency-domain methods is the selection of the frequencies and the circumferential modes to be resolved in simulations. Whilst trivial in the context of the simulation of a single compressor- or turbine-stage, the choice of solution modes becomes substantially more involved in multi-stage configurations. In this work the importance of mode scattering, in the context of the unsteady aerodynamic field, is investigated and quantified. It is shown that scattered modes can substantially impact the unsteady flow field and are essential for the accurate modelling of wake propagation within multistage configurations. Furthermore, an iterative approach is outlined, based on the spectral analysis of the circumferential modes at the interfaces between blade rows, to identify the dominant solution modes that should be resolved in the adjacent blade row. To demonstrate the importance of mode scattering and validate the approach for their identification the unsteady blade row interaction within a 4.5 stage axial compressor is computed using both the harmonic balance method and, based on a full annulus midspan simulation, a time-domain method. Through the inclusion of scattered modes it is shown that the solution quality of the harmonic balance results is comparable to that of the nonlinear time-domain simulation.


Sign in / Sign up

Export Citation Format

Share Document