Dynamic pricing in a two-class queueing system with arrival and service rate control

Author(s):  
Shuangfeng Ma ◽  
Wei Guo

Abstract Dynamic pricing in a two-class queueing system with adjustable arrival and service rates is considered in this paper. We initially take the adjustable rates into account to maximize the long-run average social welfare and further establish matched dynamic prices to lead two distinct types of customers’ behavior. For the rate-setting problems, we apply the sensitivity-based optimization theory and an iterative algorithm to investigate the two types of customers’ optimal arrival and service rates. Next, we apply the results obtained from rate-setting problems to acquire the expected delay time by recursive algorithm and demonstrate the optimal prices formulas for multiple customers explicitly. Finally, we carry out some numerical experiments to illustrate our consequence and the performance between two kinds of customers with different level of holding cost. It appears that under low holding cost, the optimal prices for two kinds of customers are monotonically increasing in the number of customers regardless of classes, but under high holding cost, the optimal prices for the customers who have low waiting cost may drop when the number of the other class rises.

1987 ◽  
Vol 19 (1) ◽  
pp. 202-218 ◽  
Author(s):  
Richard R. Weber ◽  
Shaler Stidham

We prove a monotonicity result for the problem of optimal service rate control in certain queueing networks. Consider, as an illustrative example, a number of ·/M/1 queues which are arranged in a cycle with some number of customers moving around the cycle. A holding cost hi(xi) is charged for each unit of time that queue i contains xi customers, with hi being convex. As a function of the queue lengths the service rate at each queue i is to be chosen in the interval , where cost ci(μ) is charged for each unit of time that the service rate μis in effect at queue i. It is shown that the policy which minimizes the expected total discounted cost has a monotone structure: namely, that by moving one customer from queue i to the following queue, the optimal service rate in queue i is not increased and the optimal service rates elsewhere are not decreased. We prove a similar result for problems of optimal arrival rate and service rate control in general queueing networks. The results are extended to an average-cost measure, and an example is included to show that in general the assumption of convex holding costs may not be relaxed. A further example shows that the optimal policy may not be monotone unless the choice of possible service rates at each queue includes 0.


2005 ◽  
Vol 22 (02) ◽  
pp. 239-260 ◽  
Author(s):  
R. ARUMUGANATHAN ◽  
K. S. RAMASWAMI

We analyze a Mx/G(a,b)/1 queueing system with fast and slow service rates and multiple vacations. The server does the service with a faster rate or a slower rate based on the queue length. At a service completion epoch (or) at a vacation completion epoch if the number of customers waiting in the queue is greater than or equal to N (N > b), then the service is rendered at a faster rate, otherwise with a slower service rate. After finishing a service, if the queue length is less than 'a' the server leaves for a vacation of random length. When he returns from the vacation, if the queue length is still less than 'a' he leaves for another vacation and so on until he finally finds atleast 'a' customers waiting for service. After a service (or) a vacation, if the server finds atleast 'a' customers waiting for service say ξ, then he serves a batch of min (ξ, b) customers, where b ≥ a. We derive the probability generating function of the queue size at an arbitrary time. Various performance measures are obtained. A cost model is discussed with a numerical solution.


2001 ◽  
Vol 38 (2) ◽  
pp. 369-385 ◽  
Author(s):  
Mark E. Lewis

We consider a controlled M/M/1 queueing system where customers may be subject to two potential rejections. The first occurs upon arrival and is dependent on the number of customers in the queue and the service rate of the customer currently in service. The second, which may or may not occur, occurs immediately prior to the customer receiving service. That is, after each service completion the customer in the front of the queue is assessed and the service rate of that customer is revealed. If the second decision-maker recommends rejection, the customer is denied service with a fixed probability. We show the existence of long-run average optimal monotone switching-curve policies. Further, we show that the average reward is increasing in the probability that the second decision-maker's recommendation of rejection is honored. Applications include call centers with delayed classifications and manufacturing systems when the server is responsible for multiple tasks.


2001 ◽  
Vol 38 (02) ◽  
pp. 369-385 ◽  
Author(s):  
Mark E. Lewis

We consider a controlled M/M/1 queueing system where customers may be subject to two potential rejections. The first occurs upon arrival and is dependent on the number of customers in the queue and the service rate of the customer currently in service. The second, which may or may not occur, occurs immediately prior to the customer receiving service. That is, after each service completion the customer in the front of the queue is assessed and the service rate of that customer is revealed. If the second decision-maker recommends rejection, the customer is denied service with a fixed probability. We show the existence of long-run average optimal monotone switching-curve policies. Further, we show that the average reward is increasing in the probability that the second decision-maker's recommendation of rejection is honored. Applications include call centers with delayed classifications and manufacturing systems when the server is responsible for multiple tasks.


2014 ◽  
Vol 28 (4) ◽  
pp. 489-527 ◽  
Author(s):  
Erhun Özkan ◽  
Jeffrey P. Kharoufeh

We consider the problem of controlling a two-server Markovian queueing system with heterogeneous servers. The servers are differentiated by their service rates and reliability attributes (i.e., the slower server is perfectly reliable, whereas the faster server is subject to random failures). The aim is to dynamically route customers at arrival, service completion, server failure, and server repair epochs to minimize the long-run average number of customers in the system. Using a Markov decision process model, we prove that it is always optimal to route customers to the faster server when it is available, irrespective of its failure and repair rates, if the system is stable. For the slower server, there exists an optimal threshold policy that depends on the queue length and the state of the faster server. Additionally, we analyze a variant of the main model in which there are multiple unreliable servers with identical service rates, but distinct reliability characteristics. For that case it is always optimal to route customers to idle servers, and the optimal policy is insensitive to the servers’ reliability characteristics.


1987 ◽  
Vol 19 (01) ◽  
pp. 202-218 ◽  
Author(s):  
Richard R. Weber ◽  
Shaler Stidham

We prove a monotonicity result for the problem of optimal service rate control in certain queueing networks. Consider, as an illustrative example, a number of ·/M/1 queues which are arranged in a cycle with some number of customers moving around the cycle. A holding cost hi (xi ) is charged for each unit of time that queue i contains xi customers, with hi being convex. As a function of the queue lengths the service rate at each queue i is to be chosen in the interval , where cost ci (μ) is charged for each unit of time that the service rate μis in effect at queue i. It is shown that the policy which minimizes the expected total discounted cost has a monotone structure: namely, that by moving one customer from queue i to the following queue, the optimal service rate in queue i is not increased and the optimal service rates elsewhere are not decreased. We prove a similar result for problems of optimal arrival rate and service rate control in general queueing networks. The results are extended to an average-cost measure, and an example is included to show that in general the assumption of convex holding costs may not be relaxed. A further example shows that the optimal policy may not be monotone unless the choice of possible service rates at each queue includes 0.


2011 ◽  
Vol 2 (4) ◽  
pp. 75-88
Author(s):  
Veena Goswami ◽  
G. B. Mund

This paper analyzes a discrete-time infinite-buffer Geo/Geo/2 queue, in which the number of servers can be adjusted depending on the number of customers in the system one at a time at arrival or at service completion epoch. Analytical closed-form solutions of the infinite-buffer Geo/Geo/2 queueing system operating under the triadic (0, Q N, M) policy are derived. The total expected cost function is developed to obtain the optimal operating (0, Q N, M) policy and the optimal service rate at minimum cost using direct search method. Some performance measures and sensitivity analysis have been presented.


1990 ◽  
Vol 27 (02) ◽  
pp. 465-468 ◽  
Author(s):  
Arie Harel

We show that the waiting time in queue and the sojourn time of every customer in the G/G/1 and G/D/c queue are jointly convex in mean interarrival time and mean service time, and also jointly convex in mean interarrival time and service rate. Counterexamples show that this need not be the case, for the GI/GI/c queue or for the D/GI/c queue, for c ≧ 2. Also, we show that the average number of customers in the M/D/c queue is jointly convex in arrival and service rates. These results are surprising in light of the negative result for the GI/GI/2 queue (Weber (1983)).


Author(s):  
Pamela Badian-Pessot ◽  
Mark E. Lewis ◽  
Douglas G. Down

AbstractWe consider an M/M/1 queue with a removable server that dynamically chooses its service rate from a set of finitely many rates. If the server is off, the system must warm up for a random, exponentially distributed amount of time, before it can begin processing jobs. We show under the average cost criterion, that work conserving policies are optimal. We then demonstrate the optimal policy can be characterized by a threshold for turning on the server and the optimal service rate increases monotonically with the number in system. Finally, we present some numerical experiments to provide insights into the practicality of having both a removable server and service rate control.


1996 ◽  
Vol 28 (01) ◽  
pp. 285-307 ◽  
Author(s):  
Leandros Tassiulas ◽  
Anthony Ephremides

A queueing network with arbitrary topology, state dependent routing and flow control is considered. Customers may enter the network at any queue and they are routed through it until they reach certain queues from which they may leave the system. The routing is based on local state information. The service rate of a server is controlled based on local state information as well. A distributed policy for routing and service rate control is identified that achieves maximum throughput. The policy can be implemented without knowledge of the arrival and service rates. The importance of flow control is demonstrated by showing that, in certain networks, if the servers cannot be forced to idle, then no maximum throughput policy exists when the arrival rates are not known. Also a model for exchange of state information among neighboring nodes is presented and the network is studied when the routing is based on delayed state information. A distributed policy is shown to achieve maximum throughput in the case of delayed state information. Finally, some implications for deterministic flow networks are discussed.


Sign in / Sign up

Export Citation Format

Share Document