Dynamic pricing in a two-class queueing system with arrival and service rate control
Abstract Dynamic pricing in a two-class queueing system with adjustable arrival and service rates is considered in this paper. We initially take the adjustable rates into account to maximize the long-run average social welfare and further establish matched dynamic prices to lead two distinct types of customers’ behavior. For the rate-setting problems, we apply the sensitivity-based optimization theory and an iterative algorithm to investigate the two types of customers’ optimal arrival and service rates. Next, we apply the results obtained from rate-setting problems to acquire the expected delay time by recursive algorithm and demonstrate the optimal prices formulas for multiple customers explicitly. Finally, we carry out some numerical experiments to illustrate our consequence and the performance between two kinds of customers with different level of holding cost. It appears that under low holding cost, the optimal prices for two kinds of customers are monotonically increasing in the number of customers regardless of classes, but under high holding cost, the optimal prices for the customers who have low waiting cost may drop when the number of the other class rises.