scholarly journals An unfitted hybrid high-order method for the Stokes interface problem

Author(s):  
Erik Burman ◽  
Guillaume Delay ◽  
Alexandre Ern

Abstract We design and analyze a hybrid high-order method on unfitted meshes to approximate the Stokes interface problem. The interface can cut through the mesh cells in a very general fashion. A cell-agglomeration procedure prevents the appearance of small cut cells. Our main results are inf-sup stability and a priori error estimates with optimal convergence rates in the energy norm. Numerical simulations corroborate these results.

1998 ◽  
Vol 08 (03) ◽  
pp. 407-430 ◽  
Author(s):  
D. CHAPELLE ◽  
R. STENBERG

We propose a simple modification of a recently introduced locking-free finite element method for the Reissner–Mindlin plate model. By this modification, we are able to obtain optimal convergence rates on numerical benchmarks. These results are substantiated by a complete mathematical analysis which provides optimal a priori error estimates.


Author(s):  
Carsten Carstensen ◽  
Alexandre Ern ◽  
Sophie Puttkammer

AbstractThis paper introduces a novel hybrid high-order (HHO) method to approximate the eigenvalues of a symmetric compact differential operator. The HHO method combines two gradient reconstruction operators by means of a parameter $$0<\alpha <~1$$ 0 < α < 1 and introduces a novel cell-based stabilization operator weighted by a parameter $$0<\beta <\infty $$ 0 < β < ∞ . Sufficient conditions on the parameters $$\alpha $$ α and $$\beta $$ β are identified leading to a guaranteed lower bound property for the discrete eigenvalues. Moreover optimal convergence rates are established. Numerical studies for the Dirichlet eigenvalue problem of the Laplacian provide evidence for the superiority of the new lower eigenvalue bounds compared to previously available bounds.


Author(s):  
H. Lüdeke ◽  
R. von Soldenhoff

AbstractTo determine allowable tolerances between successive suction panels at hybrid laminar wings with suction surfaces, direct numerical simulations of Tollmien–Schlichting waves over different steps are carried out for realistic suction rates on a wind tunnel configuration. Simulations at given suction panel positions over forward and backward facing steps are carried out by the use of a high-order method for the direct simulation of Tollmien–Schlichting wave growth. Comparisons between high-fidelity direct numerical simulations and quick linear stability calculations have shown capabilities and limits of the well-validated linear stability theory design approach.


Author(s):  
Ronan Guenanff ◽  
Pierre Sagaut ◽  
Eric Manoha ◽  
Marc Terracol ◽  
Roger Lewandowsky

Author(s):  
R. Guénanff ◽  
P. Sagaut ◽  
E. Manoha ◽  
R. Lewandowski

Sign in / Sign up

Export Citation Format

Share Document