mindlin plate
Recently Published Documents


TOTAL DOCUMENTS

555
(FIVE YEARS 66)

H-INDEX

44
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
pp. 230
Author(s):  
Haonan Li ◽  
Wei Wang ◽  
Linquan Yao

Rotating machinery has significant applications in the fields of micro and nano meters, such as nano-turbines, nano-motors, and biomolecular motors, etc. This paper takes rotating nano-annular plates as the research object to analyze their free vibration behaviors. Firstly, based on Kirchhoff plate theory, Mindlin plate theory, and Reddy plate theory, combined with nonlocal constitutive relations, the differential motion equations of rotating functionally graded nano-annular plates in a thermal environment are derived. Subsequently, the numerical method is used to discretize and solve the motion equations. The effects of nonlocal parameter, temperature change, inner and outer radius ratio, and rotational velocity on the vibration frequencies of the nano-annular plates are analyzed through numerical examples. Finally, the relationship between the fundamental frequencies and the thickness-to-radius ratio of the nano-annular plates of clamped inner and outer rings is discussed, and the differences in the calculation results among the three plate theories are compared.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Marcel Xavier ◽  
Nicolas Van Goethem

PurposeIn the paper an approach for crack nucleation and propagation phenomena in brittle plate structures is presented.Design/methodology/approachThe Francfort–Marigo damage theory is adapted to the Kirchhoff and Reissner–Mindlin plate bending models. Then, the topological derivative method is used to minimize the associated Francfort–Marigo shape functional. In particular, the whole damaging process is governed by a threshold approach based on the topological derivative field, leading to a notable simple algorithm.FindingsNumerical simulations are driven in order to verify the applicability of the proposed method in the context of brittle fracture modeling on plates. The obtained results reveal the capability of the method to determine nucleation and propagation including bifurcation of multiple cracks with a minimal number of user-defined algorithmic parameters.Originality/valueThis is the first work concerning brittle fracture modeling of plate structures based on the topological derivative method.


2021 ◽  
Vol 19 (3) ◽  
pp. 510-521
Author(s):  
Xiaoxiao Du ◽  
Gang Zhao ◽  
Wei Wang ◽  
Jiaming Yang ◽  
Mayi Guo ◽  
...  

Author(s):  
Le Cong Ich ◽  
Tran Quang Dung ◽  
Pham Vu Nam ◽  
Nguyen Dinh Kien

Free vibration and buckling of three-phase bidirectional functionally graded sandwich (BFGSW) plates are studied in this paper for the first time by using an efficient nine-node quadrilateral (Q9) element. The core of the sandwich plates is pure ceramic, while the two skin layers are of a three-phase bidirectional functionally graded material. The element is derived on the basis of the Mindlin plate theory and linked interpolations. Fundamental frequencies and buckling loads are computed for the plates with various boundary conditions. Numerical result shows that convergence of the linked interpolation element is faster compared to the conventional Lagrangian interpolation Q9 element. Numerical investigations are carried out to highlight the influence of the material gradation and the side-to-thickness ratio on the vibration and buckling behaviour of the plates.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Faiçal Boussem ◽  
Abderahim Belounar ◽  
Lamine Belounar

Purpose This paper aims to describe the formulation of a new finite element by assuming the strain field rather than the displacement field and by using the Reissner–Mindlin plate theory for the free vibration analysis of bending plates. This quadrilateral element consists of four-nodes and twelve degrees of freedom. The suggested element is based on assumed functions of the strain field that satisfy the compatibility equation. Design/methodology/approach After the proposition of the new element, several numerical tests for plates with regular and distorted meshes are presented to assess the performance of the new element. In addition, a parametric study is carried out to analyze the effects of biaxial loads on the natural frequencies of square plates with various boundary conditions. Detailed discussions are proposed after each benchmark problem. Findings The formulated element has verified the shear locking test and passes the patch test. The obtained results from the developed element show an excellent accuracy and fast convergence, and the natural frequencies are in excellent agreement when compared with analytical and other available numerical solutions. Originality/value The present element is simple in its formulation and has been proven to be applicable to thin or thick plate situations with sufficient accuracy. This element with full integration is free from shear locking, however, the numerical results provided by the standard four-node plate element R4 element show locking phenomena in thin plates. In addition to these features, the imposition of the compatibility conditions and the rigid body modes allow obtaining a finite element with higher-order terms for displacements field, which can increase the performance of the finite elements.


Author(s):  
Tang Jinsong ◽  
Qian Linfang ◽  
Chen Guangsong

Based on the Taylor Expansion and constrained moving least square function, a smoothed GFEM (SGFEM) is proposed in this paper for static, free vibration and buckling analysis of Reissner–Mindlin plate. The displacement function based on SGFEM is composed of classical linear finite element shape function and nodal displacement function, which are obtained by introducing the gradient smoothed meshfree approximation in Taylor expansion of nodal displacement function. A constrained moving least square function is proposed for constituting meshfree nodal displacement function. The merits of the proposed SGFEM, including high accuracy, rapid error convergence, insensitive to mesh distortion, free of shear-locking problem, no extra DOFs and temporal stability, etc., are demonstrated by several typical examples and comparisons with other numerical methods.


Sign in / Sign up

Export Citation Format

Share Document