Newton Polygon Stratification of the Torelli Locus in Unitary Shimura Varieties

Author(s):  
Wanlin Li ◽  
Elena Mantovan ◽  
Rachel Pries ◽  
Yunqing Tang

Abstract We study the intersection of the Torelli locus with the Newton polygon stratification of the modulo $p$ reduction of certain Shimura varieties. We develop a clutching method to show that the intersection of the open Torelli locus with some Newton polygon strata is non-empty. This allows us to give a positive answer, under some compatibility conditions, to a question of Oort about smooth curves in characteristic $p$ whose Newton polygons are an amalgamate sum. As an application, we produce infinitely many new examples of Newton polygons that occur for smooth curves that are cyclic covers of the projective line. Most of these arise in inductive systems that demonstrate unlikely intersections of the open Torelli locus with the Newton polygon stratification in Siegel modular varieties. In addition, for the 20 special Shimura varieties found in Moonen’s work, we prove that all Newton polygon strata intersect the open Torelli locus (if $p>>0$ in the supersingular cases).

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Wanlin Li ◽  
Elena Mantovan ◽  
Rachel Pries ◽  
Yunqing Tang

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
P. Gavrylenko ◽  
M. Semenyakin ◽  
Y. Zenkevich

Abstract We notice a remarkable connection between the Bazhanov-Sergeev solution of Zamolodchikov tetrahedron equation and certain well-known cluster algebra expression. The tetrahedron transformation is then identified with a sequence of four mutations. As an application of the new formalism, we show how to construct an integrable system with the spectral curve with arbitrary symmetric Newton polygon. Finally, we embed this integrable system into the double Bruhat cell of a Poisson-Lie group, show how triangular decomposition can be used to extend our approach to the general non-symmetric Newton polygons, and prove the Lemma which classifies conjugacy classes in double affine Weyl groups of A-type by decorated Newton polygons.


2006 ◽  
Vol 121 (1) ◽  
pp. 105-130 ◽  
Author(s):  
Jannis A. Antoniadis ◽  
Aristides Kontogeorgis

2021 ◽  
Vol 9 ◽  
Author(s):  
Zhiyou Wu

Abstract We prove that there is a natural plectic weight filtration on the cohomology of Hilbert modular varieties in the spirit of Nekovář and Scholl. This is achieved with the help of Morel’s work on weight t-structures and a detailed study of partial Frobenius. We prove in particular that the partial Frobenius extends to toroidal and minimal compactifications.


2019 ◽  
Vol 19 (10) ◽  
pp. 2050188
Author(s):  
Lhoussain El Fadil

Let [Formula: see text] be a valued field, where [Formula: see text] is a rank-one discrete valuation, with valuation ring [Formula: see text]. The goal of this paper is to investigate some basic concepts of Newton polygon techniques of a monic polynomial [Formula: see text]; namely, theorem of the product, of the polygon, and of the residual polynomial, in such way that improves that given in [D. Cohen, A. Movahhedi and A. Salinier, Factorization over local fields and the irreducibility of generalized difference polynomials, Mathematika 47 (2000) 173–196] and generalizes that given in [J. Guardia, J. Montes and E. Nart, Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc. 364(1) (2012) 361–416] to any rank-one valued field.


Sign in / Sign up

Export Citation Format

Share Document